
Simulink®

Graphical User Interface

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Graphical User Interface
© COPYRIGHT 1990–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2007 Online only New for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Online only Revised for Simulink 7.8 (Release 2011b)
March 2012 Online only Revised for Simulink 7.9 (Release 2012a)
September 2012 Online only Revised for Simulink 8.0 (Release 2012b)
March 2013 Online only Revised for Simulink 8.1 (Release 2013a)
September 2013 Online only Revised for Simulink 8.2 (Release 2013b)
March 2014 Online only Revised for Simulink 8.3 (Release 2014a)
October 2014 Online only Revised for Simulink 8.4 (Release 2014b)
March 2015 Online only Revised for Simulink 8.5 (Release 2015a)
September 2015 Online only Revised for Simulink 8.6 (Release 2015b)

v

Contents

Configuration Parameters Dialog Box
1

Configuration Parameters Dialog Box Overview 1-2
Category View . 1-2
List View . 1-3

Model Configuration Pane . 1-5
Model Configuration Overview . 1-5
Name . 1-6
Description . 1-7
Configuration Parameters (List View Only) 1-7

Solver Pane . 1-8
Solver Overview . 1-10
Start time . 1-12
Stop time . 1-13
Type . 1-15
Solver . 1-17
Max step size . 1-24
Initial step size . 1-26
Min step size . 1-28
Relative tolerance . 1-30
Absolute tolerance . 1-32
Shape preservation . 1-34
Maximum order . 1-36
Solver reset method . 1-38
Number of consecutive min steps . 1-40
Solver Jacobian Method . 1-42
Tasking mode for periodic sample times 1-44
Automatically handle rate transition for data transfer 1-46
Deterministic data transfer . 1-48
Higher priority value indicates higher task priority 1-50
Zero-crossing control . 1-51
Time tolerance . 1-53

vi Contents

Number of consecutive zero crossings 1-55
Algorithm . 1-57
Signal threshold . 1-59
Periodic sample time constraint . 1-61
Fixed-step size (fundamental sample time) 1-64
Sample time properties . 1-66
Extrapolation order . 1-69
Number Newton's iterations . 1-71
Allow tasks to execute concurrently on target 1-72

Data Import/Export Pane . 1-74
Data Import/Export Overview . 1-76
Input . 1-77
Initial state . 1-79
Time . 1-81
States . 1-83
Output . 1-85
Final states . 1-87
Format . 1-89
Limit data points to last . 1-92
Decimation . 1-94
Save complete SimState in final state 1-96
Signal logging . 1-98
Signal logging format . 1-101
Data stores . 1-104
Output options . 1-106
Refine factor . 1-108
Output times . 1-110
Save simulation output as single object 1-111
Logging intervals . 1-113
Record logged workspace data in Simulation Data Inspector 1-116
Enable live streaming of selected signals to Simulation Data

Inspector . 1-118
Write streamed signals to workspace 1-119

Optimization Pane: General . 1-120
Optimization Pane: General Tab Overview 1-122
Block reduction . 1-123
Conditional input branch execution 1-126
Implement logic signals as Boolean data (vs. double) 1-129
Application lifespan (days) . 1-131
Use division for fixed-point net slope computation 1-134
Use floating-point multiplication to handle net slope

corrections . 1-136

vii

Default for underspecified data type 1-138
Optimize using the specified minimum and maximum values 1-140
Remove root level I/O zero initialization 1-143
Use memset to initialize floats and doubles to 0.0 1-145
Remove internal data zero initialization 1-147
Optimize initialization code for model reference 1-149
Remove code from floating-point to integer conversions that

wraps out-of-range values . 1-151
Remove code from floating-point to integer conversions with

saturation that maps NaN to zero 1-153
Remove code that protects against division arithmetic

exceptions . 1-155
Compiler optimization level . 1-157
Verbose accelerator builds . 1-159

Optimization Pane: Signals and Parameters 1-160
Optimization Pane: Signals and Parameters Tab Overview 1-162
Default parameter behavior . 1-162
Signal storage reuse . 1-165
Enable local block outputs . 1-167
Reuse local block outputs . 1-169
Eliminate superfluous local variables (Expression folding) . 1-171
Reuse global block outputs . 1-174
Minimize data copies between local and global variables . . 1-175
Inline invariant signals . 1-177
Optimize global data access . 1-179
Simplify array indexing . 1-181
Use memcpy for vector assignment 1-183
Memcpy threshold (bytes) . 1-185
Pack Boolean data into bitfields . 1-186
Bitfield declarator type specifier . 1-188
Loop unrolling threshold . 1-190
Maximum stack size (bytes) . 1-191
Pass reusable subsystem outputs as 1-193
Parameter structure . 1-195
Model Parameter Configuration Dialog Box 1-197

Optimization Pane: Stateflow . 1-199
Optimization Pane: Stateflow Tab Overview 1-200
Use bitsets for storing state configuration 1-201
Use bitsets for storing Boolean data 1-203
Base storage type for automatically created enumerations . 1-205

viii Contents

Diagnostics Pane: Solver . 1-206
Solver Diagnostics Overview . 1-207
Algebraic loop . 1-209
Minimize algebraic loop . 1-211
Block priority violation . 1-213
Min step size violation . 1-215
Sample hit time adjusting . 1-217
Consecutive zero-crossings violation 1-219
Unspecified inheritability of sample time 1-221
Solver data inconsistency . 1-223
Automatic solver parameter selection 1-225
Extraneous discrete derivative signals 1-227
State name clash . 1-229
SimState interface checksum mismatch 1-230
SimState object from earlier release 1-232

Diagnostics Pane: Sample Time . 1-233
Sample Time Diagnostics Overview 1-234
Source block specifies -1 sample time 1-235
Multitask rate transition . 1-237
Single task rate transition . 1-239
Multitask conditionally executed subsystem 1-241
Tasks with equal priority . 1-243
Enforce sample times specified by Signal Specification blocks 1-245

Diagnostics Pane: Data Validity . 1-247
Data Validity Diagnostics Overview 1-249
Signal resolution . 1-250
Division by singular matrix . 1-252
Underspecified data types . 1-254
Simulation range checking . 1-257
Wrap on overflow . 1-259
Saturate on overflow . 1-261
Inf or NaN block output . 1-263
"rt" prefix for identifiers . 1-265
Detect downcast . 1-267
Detect overflow . 1-269
Detect underflow . 1-271
Detect precision loss . 1-273
Detect loss of tunability . 1-275
Detect read before write . 1-277
Detect write after read . 1-279
Detect write after write . 1-281
Multitask data store . 1-283

ix

Duplicate data store names . 1-285
Detect multiple driving blocks executing at the same time

step . 1-287
Underspecified initialization detection 1-289
Check undefined subsystem initial output 1-291
Check preactivation output of execution context 1-295
Check runtime output of execution context 1-297
Array bounds exceeded . 1-301
Model Verification block enabling 1-303

Diagnostics Pane: Type Conversion 1-305
Type Conversion Diagnostics Overview 1-306
Unnecessary type conversions . 1-307
Vector/matrix block input conversion 1-308
32-bit integer to single precision float conversion 1-310
Detect underflow . 1-311
Detect precision loss . 1-313
Detect overflow . 1-315

Diagnostics Pane: Connectivity . 1-317
Connectivity Diagnostics Overview 1-319
Signal label mismatch . 1-320
Unconnected block input ports . 1-321
Unconnected block output ports . 1-322
Unconnected line . 1-323
Unspecified bus object at root Outport block 1-324
Element name mismatch . 1-326
Mux blocks used to create bus signals 1-328
Bus signal treated as vector . 1-331
Non-bus signals treated as bus signals 1-334
Repair bus selections . 1-336
Invalid function-call connection . 1-338
Context-dependent inputs . 1-340

Diagnostics Pane: Compatibility . 1-342
Compatibility Diagnostics Overview 1-343
S-function upgrades needed . 1-344
Block behavior depends on frame status of signal 1-345

Diagnostics Pane: Model Referencing 1-347
Model Referencing Diagnostics Overview 1-348
Model block version mismatch . 1-349
Port and parameter mismatch . 1-351
Invalid root Inport/Outport block connection 1-353

x Contents

Unsupported data logging . 1-358

Diagnostics Pane: Saving . 1-360
Saving Tab Overview . 1-361
Block diagram contains disabled library links 1-362
Block diagram contains parameterized library links 1-364

Diagnostics Pane: Stateflow . 1-366
Stateflow Diagnostics Overview . 1-367
Unused data, events and messages 1-368
Unexpected backtracking . 1-370
Invalid input data access in chart initialization 1-372
No unconditional default transitions 1-374
Transition outside natural parent 1-376
Transition shadowing . 1-377
Undirected event broadcasts . 1-378
Transition action specified before condition action 1-380
Read-before-write to output in Moore chart 1-382

Hardware Implementation Pane . 1-383
Hardware Implementation Overview 1-386
Hardware board . 1-387
Code Generation system target file 1-389
Device vendor . 1-390
Device type . 1-392
Device details . 1-404
Number of bits: char . 1-405
Number of bits: short . 1-407
Number of bits: int . 1-409
Number of bits: long . 1-411
Number of bits: long long . 1-413
Number of bits: float . 1-415
Number of bits: double . 1-416
Number of bits: native . 1-417
Number of bits: pointer . 1-419
Largest atomic size: integer . 1-420
Largest atomic size: floating-point 1-422
Byte ordering . 1-424
Signed integer division rounds to 1-426
Shift right on a signed integer as arithmetic shift 1-428
Support long long . 1-430
Test hardware is the same as production hardware 1-431
Test device vendor and type . 1-433
Device vendor . 1-445

xi

Device type . 1-447
Number of bits: char . 1-459
Number of bits: short . 1-461
Number of bits: int . 1-463
Number of bits: long . 1-465
Number of bits: long long . 1-466
Number of bits: float . 1-468
Number of bits: double . 1-469
Number of bits: native . 1-470
Number of bits: pointer . 1-472
Largest atomic size: integer . 1-473
Largest atomic size: floating-point 1-475
Byte ordering . 1-477
Signed integer division rounds to 1-479
Shift right on a signed integer as arithmetic shift 1-481
Support long long . 1-483
Build action . 1-485
Set host COM port . 1-486
Analog input reference voltage . 1-487
Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial

3 baud rate . 1-488
SPI clock out frequency (in MHz) 1-489
. 1-490

Bit order . 1-491
IP address (Ethernet shield) . 1-492
MAC address . 1-493
IP address (WiFi shield) . 1-494
Service set identifier (SSID) . 1-495
WiFi encryption . 1-496
WEP key . 1-497
WEP key index . 1-498
WPA password . 1-499
Communication interface . 1-500
Verbose . 1-501

Model Referencing Pane . 1-502
Model Referencing Pane Overview 1-504
Rebuild . 1-505
Never rebuild diagnostic . 1-515
Enable parallel model reference builds 1-517
MATLAB worker initialization for builds 1-519
Enable strict scheduling checks for referenced export-function

models . 1-520
Total number of instances allowed per top model 1-521

xii Contents

Pass fixed-size scalar root inputs by value for code
generation . 1-523

Minimize algebraic loop occurrences 1-525
Propagate all signal labels out of the model 1-527
Propagate sizes of variable-size signals 1-530
Model dependencies . 1-532

Simulation Target Pane: General . 1-535
Simulation Target: General Tab Overview 1-536
Ensure responsiveness . 1-539
Echo expressions without semicolons 1-541
Ensure memory integrity . 1-543
Generate typedefs for imported bus and enumeration types 1-545
Simulation target build mode . 1-546

Simulation Target Pane: Symbols . 1-548
Simulation Target: Symbols Tab Overview 1-549
Reserved names . 1-550

Simulation Target Pane: Custom Code 1-552
Simulation Target: Custom Code Tab Overview 1-554
Parse custom code symbols . 1-555
Source file . 1-557
Header file . 1-558
Initialize function . 1-559
Terminate function . 1-560
Include directories . 1-561
Source files . 1-563
Libraries . 1-564
Use local custom code settings (do not inherit from main

model) . 1-565

Run on Target Hardware Pane . 1-567
Hardware Implementation Pane Overview 1-569
Target hardware . 1-570
External mode transport layer . 1-571
Enable External mode . 1-572
IP address . 1-573
Connection type . 1-574
Device name . 1-575
TCP/IP port (1024-65535) . 1-576
Enable overrun detection . 1-577
Device . 1-578
Package name . 1-579

xiii

Digital output to set on overrun . 1-580
Enable communication between two NXT bricks 1-581
Bluetooth mode . 1-582
Slave Bluetooth address . 1-583
Host name . 1-584
User name . 1-585
Password . 1-586
Build directory . 1-587
Set host COM port . 1-587
COM port number . 1-588
Analog input reference voltage . 1-588
Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial

3 baud rate . 1-589
IP address . 1-589
MAC address . 1-589
IP address . 1-590
Service set identifier (SSID) . 1-590
WiFi encryption . 1-590
WPA password . 1-590
WEP key . 1-590
WEP key index . 1-590

Library Browser
2

Use the Library Browser . 2-2
Libraries Pane . 2-2
Blocks Pane . 2-3
Search for Blocks in the Library Browser 2-5

Library Browser Keyboard Shortcuts 2-7

Signal Properties Dialog Box
3

Signal Properties Dialog Box Overview 3-2

xiv Contents

Signal Properties Controls . 3-4
Signal name . 3-4
Signal name must resolve to Simulink signal object 3-4
Show propagated signals . 3-4

Logging and Accessibility Options . 3-6
Log signal data . 3-6
Test point . 3-6
Logging name . 3-6
Data . 3-7

Code Generation Options . 3-8
Package . 3-8
Storage class . 3-8
Storage type qualifier . 3-8

Data Transfer Options for Concurrent Execution 3-9
Specify data transfer settings . 3-9
Data transfer handling option . 3-9
Extrapolation method (continuous-time signals) 3-9
Initial condition . 3-9

Documentation Options . 3-11
Description . 3-11
Document link . 3-11

Simulink Preferences Window
4

Set Simulink Preferences . 4-2

Main Pane . 4-3
Simulink Preferences Window Overview 4-4
Model File Change Notification . 4-7
Updating or simulating the model . 4-8
Action . 4-9
First editing the model . 4-10
Saving the model . 4-11
Autosave . 4-12
Save before updating or simulating the model 4-13

xv

Save backup when overwriting a file created in an older version
of Simulink . 4-14

Warn when opening Model blocks with Normal Mode Visibility
set to off . 4-16

Notify when loading an old model . 4-17
Do not load models created with a newer version of Simulink 4-18
Do not load models that are shadowed on the MATLAB path 4-19
Save a thumbnail image inside SLX files 4-20
Callback tracing . 4-21
Open the sample time legend whenever sample time display is

changed . 4-22
File generation control . 4-23
Simulation cache folder . 4-24
Code generation folder . 4-25
Print . 4-25
Export . 4-26
Clipboard . 4-27
File format for new models and libraries 4-27

Display Defaults for New Models Pane 4-29
Simulink Display Defaults Overview 4-29
Show masked subsystems . 4-31
Show library links . 4-32
Wide nonscalar lines . 4-34
Show port data types . 4-35

Font Defaults for New Models Pane 4-36
Simulink Font Defaults Overview . 4-36

Editor Defaults Pane . 4-37
Simulink Editor Defaults Overview 4-38
Use classic diagram theme . 4-38
Line crossing style . 4-39
Scroll wheel controls zooming . 4-39
Enable smart editing features . 4-39
File Toolbar . 4-40
Print . 4-40
Cut/Copy/Paste . 4-40
Undo/Redo . 4-40
Browse Back/Forward/Up . 4-40
Library/Model Configuration/Model Explorer 4-40
Refresh Blocks . 4-40
Update Diagram . 4-40
Simulation . 4-40

xvi Contents

Fast Restart . 4-41
Debug Model . 4-41
Model Advisor . 4-41
Build . 4-41
Find . 4-41

Data Management Defaults Pane . 4-42
Simulink Data Management Defaults Overview 4-42
Package . 4-42

Configuration Defaults Pane . 4-44
Simulink Configuration Defaults Overview 4-44

Simulink Mask Editor
5

Mask Editor Overview . 5-2

Icon & Ports Pane . 5-5
About the Icon & Ports Pane . 5-5
Options . 5-6
Icon drawing commands . 5-10
Examples of drawing commands . 5-11

Parameters & Dialog Pane . 5-12
About the Parameters & Dialog Pane 5-12
Controls . 5-14
Dialog box . 5-20
Property editor . 5-24

Initialization Pane . 5-28
About the Initialization Pane . 5-28
Dialog variables . 5-30
Initialization commands . 5-30
Allow library block to modify its contents 5-30
Rules for Initialization commands . 5-31

Documentation Pane . 5-32
About the Documentation Pane . 5-32
Mask type . 5-33

xvii

Mask description . 5-33
Mask help . 5-33

Concurrent Execution Window
6

Concurrent Execution Window: Main Pane 6-2
Concurrent Execution Window Overview 6-2
Enable explicit model partitioning for concurrent behavior . . 6-5

Data Transfer Pane . 6-6
Data Transfer Pane Overview . 6-6
Periodic signals . 6-7
Continuous signals . 6-8
Extrapolation method . 6-9
Automatically handle rate transition for data transfer 6-9

CPU Pane . 6-11
CPU Pane Overview . 6-11
Name . 6-12

Hardware Node Pane . 6-13
Hardware Node Pane Overview . 6-13
Name . 6-14
Clock Frequency [MHz] . 6-14
Color . 6-14

Periodic Pane . 6-16
Periodic Pane Overview . 6-16
Name . 6-17
Periodic Trigger . 6-18
Color . 6-19
Template . 6-19

Task Pane . 6-20
Task Pane Overview . 6-20
Name . 6-21
Period . 6-22
Color . 6-23

xviii Contents

Interrupt Pane . 6-24
Interrupt Pane Overview . 6-24
Name . 6-25
Color . 6-26
Aperiodic trigger source . 6-27
Signal number [2,SIGRTMAX-SIGRTMIN-1] 6-28
Event name . 6-29

System Tasks Pane . 6-30
System Tasks Pane Overview . 6-30

System Task Pane . 6-31
System Task Pane Overview . 6-31
Name . 6-32
Period . 6-33
Color . 6-34

System Interrupt Pane . 6-35
System Interrupt Pane Overview . 6-35
Name . 6-36
Color . 6-37

Profile Report Pane . 6-38
Profile Report Pane Overview . 6-38
Number of time steps . 6-39

Simulink Simulation Stepper
7

Simulation Stepping Options . 7-2
Simulation Stepping Options Overview 7-2
Enable stepping back . 7-4
Maximum number of saved back steps 7-5
Interval between stored back steps . 7-6
Move back/forward by . 7-7
Pause simulation when time reaches 7-8

xix

Simulink Variant Manager
8

Variant Manager Overview . 8-2

Variant Configuration Data Pane . 8-3
Name . 8-3
Configurations . 8-3
Constraints . 8-5

Model Hierarchy Pane . 8-6
Validate Configuration . 8-6
Show . 8-7
Hierarchy Table . 8-7

Validation Results Pane . 8-9
Source . 8-9
Message . 8-9

1

Configuration Parameters Dialog Box

• “Configuration Parameters Dialog Box Overview” on page 1-2
• “Model Configuration Pane” on page 1-5
• “Solver Pane” on page 1-8
• “Data Import/Export Pane” on page 1-74
• “Optimization Pane: General” on page 1-120
• “Optimization Pane: Signals and Parameters” on page 1-160
• “Optimization Pane: Stateflow” on page 1-199
• “Diagnostics Pane: Solver” on page 1-206
• “Diagnostics Pane: Sample Time” on page 1-233
• “Diagnostics Pane: Data Validity” on page 1-247
• “Diagnostics Pane: Type Conversion” on page 1-305
• “Diagnostics Pane: Connectivity” on page 1-317
• “Diagnostics Pane: Compatibility” on page 1-342
• “Diagnostics Pane: Model Referencing” on page 1-347
• “Diagnostics Pane: Saving” on page 1-360
• “Diagnostics Pane: Stateflow” on page 1-366
• “Hardware Implementation Pane” on page 1-383
• “Model Referencing Pane” on page 1-502
• “Simulation Target Pane: General” on page 1-535
• “Simulation Target Pane: Symbols” on page 1-548
• “Simulation Target Pane: Custom Code” on page 1-552
• “Run on Target Hardware Pane” on page 1-567

1 Configuration Parameters Dialog Box

1-2

Configuration Parameters Dialog Box Overview

In this section...

“Category View” on page 1-2
“List View” on page 1-3

The Configuration Parameters dialog box specifies the settings for a model’s active
configuration set. The parameters in a configuration set determine the type of solver
used, import and export settings, and other values that determine how the model runs.
See Configuration Sets for more information.

Note You can also use the Model Explorer to modify any configuration set. See “Model
Explorer Overview” for more information.

To open the dialog box, in the Simulink Editor, select Simulation > Model

Configuration Parameters, or click the Model Configuration Parameters button
on the Simulink Editor toolbar. In the dialog box, you can view the configuration set in
either of two ways. The default view displays commonly used parameters by category.
The list view displays the complete list of user-visible parameters in the configuration
set. You can edit parameter values in either the category view or the list view.

Category View

The category view groups commonly used configuration parameters into categories.
To change to the category view from the list view, click Category. To display the
parameters for a specific category, click the category in the Select tree on the left side of
the dialog box.

 Configuration Parameters Dialog Box Overview

1-3

List View

The list view includes all user-visible parameters in the configuration set. Click List to
change to this view from the category view. You can use the list view to:

• Search for specific parameters or filter parameters by category.
• Sort parameters by column by clicking the column name. To restore the original sort

order, click the reset icon in the top left corner.
• Edit parameter values.
• View parameter dependencies by expanding the parameter description.
• Get parameter names to use in scripts from the Command-Line Name column.

You can also set each of the parameters in the Configuration Parameters dialog box
using the set_param command. The list view displays the corresponding command-line
name for each parameter.

1 Configuration Parameters Dialog Box

1-4

 Model Configuration Pane

1-5

Model Configuration Pane

In this section...

“Model Configuration Overview” on page 1-5
“Name” on page 1-6
“Description” on page 1-7
“Configuration Parameters (List View Only)” on page 1-7

Model Configuration Overview

View or edit the name and description of your configuration set.

In the Model Explorer you can edit the name and description of your configuration sets.

In the Model Explorer or Simulink Preferences window you can edit the description
of your template configuration set, Model Configuration Preferences. Go to the Model
Configuration Preferences to edit the template Configuration Parameters to be used as
defaults for new models.

When editing the Model Configuration preferences, you can click Restore to Default
Preferences to restore the default configuration settings for creating new models. These
underlying defaults cannot be changed.

1 Configuration Parameters Dialog Box

1-6

Name

Specify the name of your configuration set.

Settings

Default: Configuration (for Active configuration set) or Configuration
Preferences (for default configuration set).

Edit the name of your configuration set.

In the Model Configuration Preferences, the name of the default configuration is always
Configuration Preferences, and cannot be changed.

 Model Configuration Pane

1-7

Description

Specify a description of your configuration set.

Settings

No Default

Enter text to describe your configuration set.

Configuration Parameters (List View Only)

No further help documentation is available for this parameter.

1 Configuration Parameters Dialog Box

1-8

Solver Pane

In this section...

“Solver Overview” on page 1-10
“Start time” on page 1-12
“Stop time” on page 1-13
“Type” on page 1-15
“Solver” on page 1-17
“Max step size” on page 1-24
“Initial step size” on page 1-26
“Min step size” on page 1-28

 Solver Pane

1-9

In this section...

“Relative tolerance” on page 1-30
“Absolute tolerance” on page 1-32
“Shape preservation” on page 1-34
“Maximum order” on page 1-36
“Solver reset method” on page 1-38
“Number of consecutive min steps” on page 1-40
“Solver Jacobian Method” on page 1-42
“Tasking mode for periodic sample times” on page 1-44
“Automatically handle rate transition for data transfer” on page 1-46
“Deterministic data transfer” on page 1-48
“Higher priority value indicates higher task priority” on page 1-50
“Zero-crossing control” on page 1-51
“Time tolerance” on page 1-53
“Number of consecutive zero crossings” on page 1-55
“Algorithm” on page 1-57
“Signal threshold” on page 1-59
“Periodic sample time constraint” on page 1-61
“Fixed-step size (fundamental sample time)” on page 1-64
“Sample time properties” on page 1-66
“Extrapolation order” on page 1-69
“Number Newton's iterations” on page 1-71
“Allow tasks to execute concurrently on target” on page 1-72

1 Configuration Parameters Dialog Box

1-10

Solver Overview

Specify the simulation start and stop time, and the solver configuration for the
simulation. Use the Solver pane to set up a solver for a model's active configuration set.

A solver computes a dynamic system's states at successive time steps over a specified
time span, using information provided by the model. Once the model compiles, the Solver
Information tooltip displays

• Compiled solver name
• Step size (Max step size or Fixed step size)

Once the model compiles, the status bar displays the solver used for compiling and a
carat (^) when:

• Simulink selects a different solver during compilation.
• You set the step size to auto. The Solver Information tooltip displays the step size

that Simulink calculated.

Configuration

1 Select a solver type from the Type list.
2 Select a solver from the Solver list.
3 Set the parameters displayed for the selected type and solver combination.
4 Apply the changes.

Tips

• To open the Solver pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Solver.

• Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

• Fixed-step solver type is required for code generation, unless you use an S-function
or RSim target.

• Variable-step solver type can significantly shorten the time required to simulate
models in which states change rapidly or which contain discontinuities.

See Also

• “Solvers”

 Solver Pane

1-11

• “Specify Simulation Start and Stop Time”

1 Configuration Parameters Dialog Box

1-12

Start time

Specify the start time for the simulation or generated code as a double-precision value,
scaled to seconds.

Settings

Default: 0.0

• A start time must be less than or equal to the stop time. For example, use a nonzero
start time to delay the start of a simulation while running an initialization script.

• The values of block parameters with initial conditions must match the initial
condition settings at the specified start time.

• Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

Command-Line Information

Parameter: StartTime
Type: string
Value: any valid value
Default: '0.0'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution 0.0

See Also

• “Specify Simulation Start and Stop Time”

 Solver Pane

1-13

Stop time

Specify the stop time for the simulation or generated code as a double-precision value,
scaled to seconds.

Settings

Default: 10

• Stop time must be greater than or equal to the start time.
• Specify inf to run a simulation or generated program until you explicitly pause or

stop it.
• If the stop time is the same as the start time, the simulation or generated program

runs for one step.
• Simulation time is not the same as clock time. For example, running a simulation for

10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

• If your model includes blocks that depend on absolute time and you are creating a
design that runs indefinitely, see “Blocks That Depend on Absolute Time”.

Command-Line Information

Parameter: StopTime
Type: string
Value: any valid value
Default: '10.0'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution A positive value

See Also

• “Blocks That Depend on Absolute Time”

1 Configuration Parameters Dialog Box

1-14

• “Use Blocks to Stop or Pause a Simulation”
• “Specify Simulation Start and Stop Time”

 Solver Pane

1-15

Type

Select the type of solver you want to use to simulate your model.

Settings

Default: Variable-step

Variable-step

Step size varies from step to step, depending on model dynamics. A variable-step
solver:

• Reduces step size when model states change rapidly, to maintain accuracy.
• Increases step size when model states change slowly, to avoid unnecessary steps.

Variable-step is recommended for models in which states change rapidly or that
contain discontinuities. In these cases, a variable-step solver requires fewer time
steps than a fixed-step solver to achieve a comparable level of accuracy. This can
significantly shorten simulation time.

Fixed-step

Step size remains constant throughout the simulation.

Required for code generation, unless you use an S-function or RSim target.

Note: The solver computes the next time as the sum of the current time and the step size.

Dependencies

Selecting Variable-step enables the following parameters:

• Solver
• Max step size
• Min step size
• Initial step size
• Relative tolerance
• Absolute tolerance
• Shape preservation

1 Configuration Parameters Dialog Box

1-16

• Initial step size
• Number of consecutive min steps
• Zero-crossing control
• Time tolerance
• Algorithm

Selecting Fixed-step enables the following parameters:

• Solver
• Periodic sample time constraint
• Fixed-step size (fundamental sample time)
• Tasking mode for periodic sample times
• Higher priority value indicates higher task priority
• Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SolverType
Type: string
Value: 'Variable-step' | 'Fixed-step'
Default: 'Variable-step'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Fixed-step

See Also

• “Solvers”
• “Solvers”
• “Purely Discrete Systems”

 Solver Pane

1-17

Solver

Select the solver you want to use to compute the states of the model during simulation or
code generation.

Settings

Select from these types:

• “Fixed-step Solvers” on page 1-17
• “Variable-step Solvers” on page 1-18

The default setting for new models is VariableStepAuto.

Fixed-step Solvers

Default:FixedStepAuto

auto

Computes the state of the model using a fixed-step solver that auto solver selects.
At the time the model compiles, auto changes to a fixed-step solver that auto solver
selects based on the model dynamics. Click on the solver hyperlink in the lower right
corner of the model to accept or change this selection.

ode3 (Bogacki-Shampine)

Computes the state of the model at the next time step as an explicit function of the
current value of the state and the state derivatives, using the Bogacki-Shampine
Formula integration technique to compute the state derivatives. In the following
example, X is the state, DX is the state derivative, and h is the step size:

X(n+1) = X(n) + h * DX(n)

Discrete (no continuous states)

Computes the time of the next time step by adding a fixed step size to the current
time.

Use this solver for models with no states or discrete states only, using a fixed step
size. Relies on the model's blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on the size of
the steps taken by the simulation: the smaller the step size, the more accurate the
results but the longer the simulation takes.

1 Configuration Parameters Dialog Box

1-18

Note: The fixed-step discrete solver cannot be used to simulate models that have
continuous states.

ode8 (Dormand-Prince RK8(7))

Uses the eighth-order Dormand-Prince formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives approximated at intermediate points.

ode5 (Dormand-Prince)

Uses the fifth-order Dormand-Prince formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives approximated at intermediate points.

ode4 (Runge-Kutta)

Uses the fourth-order Runge-Kutta (RK4) formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives.

ode2 (Heun)

Uses the Heun integration method to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives.

ode1 (Euler)

Uses the Euler integration method to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives.

ode14x (extrapolation)

Uses a combination of Newton's method and extrapolation from the current value to
compute the model's state at the next time step, as an implicit function of the state
and the state derivative at the next time step. In the following example, X is the
state, DX is the state derivative, and h is the step size:

X(n+1) - X(n) - h * DX(n+1) = 0

This solver requires more computation per step than an explicit solver, but is more
accurate for a given step size.

Variable-step Solvers

Default:VariableStepAuto

auto

 Solver Pane

1-19

Computes the state of the model using a variable-step solver that auto solver selects.
At the time the model compiles, auto changes to a variable-step solver that auto
solver selects based on the model dynamics. Click on the solver hyperlink in the
lower right corner of the model to accept or change this selection.

ode45 (Dormand-Prince)

Computes the model's state at the next time step using an explicit Runge-Kutta (4,5)
formula (the Dormand-Prince pair) for numerical integration.

ode45 is a one-step solver, and therefore only needs the solution at the preceding
time point.

Use ode45 as a first try for most problems.
Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies depending on
the rate of change of the model's states.

Use this solver for models with no states or discrete states only, using a variable step
size.

ode23 (Bogacki-Shampine)

Computes the model's state at the next time step using an explicit Runge-Kutta (2,3)
formula (the Bogacki-Shampine pair) for numerical integration.

ode23 is a one-step solver, and therefore only needs the solution at the preceding
time point.

ode23 is more efficient than ode45 at crude tolerances and in the presence of mild
stiffness.

ode113 (Adams)

Computes the model's state at the next time step using a variable-order Adams-
Bashforth-Moulton PECE numerical integration technique.

ode113 is a multistep solver, and thus generally needs the solutions at several
preceding time points to compute the current solution.

ode113 can be more efficient than ode45 at stringent tolerances.
ode15s (stiff/NDF)

Computes the model's state at the next time step using variable-order numerical
differentiation formulas (NDFs). These are related to, but more efficient than the
backward differentiation formulas (BDFs), also known as Gear's method.

1 Configuration Parameters Dialog Box

1-20

ode15s is a multistep solver, and thus generally needs the solutions at several
preceding time points to compute the current solution.

ode15s is efficient for stiff problems. Try this solver if ode45 fails or is inefficient.
ode23s (stiff/Mod. Rosenbrock)

Computes the model's state at the next time step using a modified Rosenbrock
formula of order 2.

ode23s is a one-step solver, and therefore only needs the solution at the preceding
time point.

ode23s is more efficient than ode15s at crude tolerances, and can solve stiff
problems for which ode15s is ineffective.

ode23t (Mod. stiff/Trapezoidal)

Computes the model's state at the next time step using an implementation of the
trapezoidal rule with a “free” interpolant.

ode23t is a one-step solver, and therefore only needs the solution at the preceding
time point.

Use ode23t if the problem is only moderately stiff and you need a solution with no
numerical damping.

ode23tb (stiff/TR-BDF2)

Computes the model's state at the next time step using a multistep implementation
of TR-BDF2, an implicit Runge-Kutta formula with a trapezoidal rule first stage,
and a second stage consisting of a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both stages.

ode23tb is more efficient than ode15s at crude tolerances, and can solve stiff
problems for which ode15s is ineffective.

Tips

• Identifying the optimal solver for a model requires experimentation. For an in-depth
discussion, see “Solvers”.

• The optimal solver balances acceptable accuracy with the shortest simulation time.
• Simulink software uses a discrete solver for any model with no states or discrete

states only, even if you specify a continuous solver.
• A smaller step size increases accuracy, but also increases simulation time.

 Solver Pane

1-21

• The degree of computational complexity increases for oden, as n increases.
• As computational complexity increases, the accuracy of the results also increases.

Dependencies

Selecting the ode1 (Euler) , ode2 (Huen), ode 3 (Bogacki-Shampine), ode4
(Runge-Kutta), ode 5 (Dormand-Prince), or Discrete (no continuous
states) fixed-step solvers enables the following parameters:

• Fixed-step size (fundamental sample time)
• Periodic sample time constraint
• Tasking mode for periodic sample times
• Automatically handle rate transition for data transfers
• Higher priority value indicates higher task priority

Selecting ode14x (extrapolation) enables the following parameters:

• Fixed-step size (fundamental sample time)
• Extrapolation order
• Number Newton's iterations
• Periodic sample time constraint
• Tasking mode for periodic sample times
• Automatically handle rate transition for data transfers
• Higher priority value indicates higher task priority

Selecting the Discrete (no continuous states) variable-step solver enables the
following parameters:

• Max step size
• Automatically handle rate transition for data transfers
• Higher priority value indicates higher task priority
• Zero-crossing control
• Time tolerance
• Number of consecutive zero crossings
• Algorithm

1 Configuration Parameters Dialog Box

1-22

Selecting ode45 (Dormand-Prince), ode23 (Bogacki-Shampine), ode113
(Adams), or ode23s (stiff/Mod. Rosenbrock) enables the following parameters:

• Max step size
• Min step size
• Initial step size
• Relative tolerance
• Absolute tolerance
• Shape preservation
• Number of consecutive min steps
• Automatically handle rate transition for data transfers
• Higher priority value indicates higher task priority
• Zero-crossing control
• Time tolerance
• Number of consecutive zero crossings
• Algorithm

Selecting ode15s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or ode23tb
(stiff/TR-BDF2) enables the following parameters:

• Max step size
• Min step size
• Initial step size
• Solver reset method
• Number of consecutive min steps
• Relative tolerance
• Absolute tolerance
• Shape preservation
• Maximum order
• Automatically handle rate transition for data transfers
• Higher priority value indicates higher task priority
• Zero-crossing control
• Time tolerance

 Solver Pane

1-23

• Number of consecutive zero crossings
• Algorithm

Command-Line Information
Parameter: Solver
Type: string
Value: 'VariableStepAuto' | 'VariableStepDiscrete' | 'ode45' |
'ode23' | 'ode113' | 'ode15s' | 'ode23s' | 'ode23t' | 'ode23tb' |

'FixedStepAuto' | 'FixedStepDiscrete' |'ode8'| 'ode5' | 'ode4' |

'ode3' | 'ode2' | 'ode1' | 'ode14x'

Default: 'ode45'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Discrete (no continuous states)

See Also

• “Solvers”
• “Solvers”
• “Purely Discrete Systems”

1 Configuration Parameters Dialog Box

1-24

Max step size

Specify the largest time step that the solver can take.

Settings

Default: auto

• For the discrete solver, the default value (auto) is the model's shortest sample time.
• For continuous solvers, the default value (auto) is determined from the start and stop

times. If the stop time equals the start time or is inf, Simulink chooses 0.2 seconds
as the maximum step size. Otherwise, it sets the maximum step size to

h
t tstop start

max
=

-

50

• For Sine and Signal Generator source blocks, Simulink calculates the max step size
using this heuristic:

h
t t

Freq

stop start

max

max

min ,=
- Ê

ËÁ
ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê
ËÁ

ˆ
¯̃50

1

3

1

where Freq
max

 is the maximum frequency (Hz) of these blocks in the model.

Tips

• Generally, the default maximum step size is sufficient. If you are concerned about the
solver missing significant behavior, change the parameter to prevent the solver from
taking too large a step.

• Max step size determines the step size of the variable-step solver.
• If the time span of the simulation is very long, the default step size might be too large

for the solver to find the solution.
• If your model contains periodic or nearly periodic behavior and you know the period,

set the maximum step size to some fraction (such as 1/4) of that period.
• In general, for more output points, change the refine factor, not the maximum step

size.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

 Solver Pane

1-25

Command-Line Information
Parameter: MaxStep
Type: string
Value: any valid value
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Purely Discrete Systems”

1 Configuration Parameters Dialog Box

1-26

Initial step size

Specify the size of the first time step that the solver takes.

Settings

Default: auto

By default, the solver selects an initial step size by examining the derivatives of the
states at the start time.

Tips

• Be careful when increasing the initial step size. If the first step size is too large, the
solver might step over important behavior.

• The initial step size parameter is a suggested first step size. The solver tries this step
size but reduces it if error criteria are not satisfied.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: InitialStep
Type: string
Value: any valid value
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Purely Discrete Systems”
• “How Performance Advisor Improves Simulation Performance”

 Solver Pane

1-27

1 Configuration Parameters Dialog Box

1-28

Min step size

Specify the smallest time step that the solver can take.

Settings

Default: auto

• The default value (auto) sets an unlimited number of warnings and a minimum step
size on the order of machine precision.

• You can specify either a real number greater than zero, or a two-element vector
for which the first element is the minimum step size and the second element is the
maximum number of minimum step size warnings before an error was issued.

Tips

• If the solver takes a smaller step to meet error tolerances, it issues a warning
indicating the current effective relative tolerance.

• Setting the second element to zero results in an error the first time the solver must
take a step smaller than the specified minimum. This is equivalent to changing the
Min step size violation diagnostic to error on the Diagnostics pane (see “Min
step size violation” on page 1-215).

• Setting the second element to -1 results in an unlimited number of warnings. This is
also the default if the input is a scalar.

• Min step size determines the step size of the variable step ODE solver. The size is
limited by the smallest discrete sample time in the model.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: MinStep
Type: string
Value: any valid value
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact

 Solver Pane

1-29

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Purely Discrete Systems”
• “Min step size violation” on page 1-215

1 Configuration Parameters Dialog Box

1-30

Relative tolerance

Specify the largest acceptable solver error, relative to the size of each state during each
time step. If the relative error exceeds this tolerance, the solver reduces the time step
size.

Settings

Default: 1e-3

• Setting the relative tolerance to auto is actually the default value of 1e-3.
• The relative tolerance is a percentage of the state's value.
• The default value (1e-3) means that the computed state is accurate to within 0.1%.

Tips

• The acceptable error at each time step is a function of both the Relative tolerance
and the Absolute tolerance. For more information about how these settings work
together, see “ Error Tolerances for Variable-Step Solvers”.

• During each time step, the solver computes the state values at the end of the step and
also determines the local error – the estimated error of these state values. If the error
is greater than the acceptable error for any state, the solver reduces the step size and
tries again.

• The default relative tolerance value is sufficient for most applications. Decreasing the
relative tolerance value can slow down the simulation.

• To check the accuracy of a simulation after you run it, you can reduce the relative
tolerance to 1e-4 and run it again. If the results of the two simulations are not
significantly different, you can feel confident that the solution has converged.

Dependencies

This parameter is enabled only if you set:

• Solver Type to Variable-step.
• Solver to a continuous variable-step solver.

This parameter works along with Absolute tolerance to determine the acceptable error
at each time step. For more information about how these settings work together, see “
Error Tolerances for Variable-Step Solvers”.

 Solver Pane

1-31

Command-Line Information
Parameter: RelTol
Type: string
Value: any valid value
Default: '1e-3'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “ Error Tolerances for Variable-Step Solvers”
• “How Performance Advisor Improves Simulation Performance”

1 Configuration Parameters Dialog Box

1-32

Absolute tolerance

Specify the largest acceptable solver error, as the value of the measured state approaches
zero. If the absolute error exceeds this tolerance, the solver reduces the time step size.

Settings

Default: auto

• The default value (auto) initially sets the absolute tolerance for each state to 1e-6.
As the simulation progresses, the absolute tolerance for each state is reset to the
maximum value that the state has thus far assumed times the relative tolerance for
that state.

For example, if a state goes from 0 to 1 and the Relative tolerance is 1e-3, then by
the end of the simulation, the Absolute tolerance is set to 1e-3.

• If the computed setting is not suitable, you can determine an appropriate setting
yourself.

Tips

• The acceptable error at each time step is a function of both the Relative tolerance
and the Absolute tolerance. For more information about how these settings work
together, see “ Error Tolerances for Variable-Step Solvers”.

• The Integrator, Second-Order Integrator, Variable Transport Delay, Transfer Fcn,
State-Space, and Zero-Pole blocks allow you to specify absolute tolerance values
for solving the model states that they compute or that determine their output. The
absolute tolerance values that you specify in these blocks override the global setting
in the Configuration Parameters dialog box.

• You might want to override the Absolute tolerance setting using blocks if the
global setting does not provide sufficient error control for all of your model states, for
example, if they vary widely in magnitude.

• If you set the Absolute tolerance too low, the solver might take too many steps
around near-zero state values, and thus slow the simulation.

• To check the accuracy of a simulation after you run it, you can reduce the absolute
tolerance and run it again. If the results of the two simulations are not significantly
different, you can feel confident that the solution has converged.

• If your simulation results do not seem accurate, and your model has states whose
values approach zero, the Absolute tolerance may be too large. Reduce the

 Solver Pane

1-33

Absolute tolerance to force the simulation to take more steps around areas of near-
zero state values.

Dependencies

This parameter is enabled only if you set:

• Solver Type to Variable-step.
• Solver to a continuous variable-step solver.

This parameter works along with Relative tolerance to determine the acceptable error
at each time step. For more information about how these settings work together, see “
Error Tolerances for Variable-Step Solvers”.

Command-Line Information for Configuration Parameters
Parameter: AbsTol
Type: string | numeric value
Value: 'auto' | positive real scalar
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “ Error Tolerances for Variable-Step Solvers”
• “How Performance Advisor Improves Simulation Performance”

1 Configuration Parameters Dialog Box

1-34

Shape preservation

At each time step use derivative information to improve integration accuracy.

Settings

Default: Disable all

Disable all

Do not perform Shape preservation on any signals.
Enable all

Perform Shape preservation on all signals.

Tips

• The default setting (Disable all) usually provides good accuracy for most models.
• Setting to Enable all will increase accuracy in those models having signals whose

derivative exhibits a high rate of change, but simulation time may be increased.

Dependencies

This parameter is enabled only if you use a continuous-step solver.

Command-Line Information
Parameter: ShapePreserveControl
Type: string
Value: 'EnableAll | 'DisableAll
Default: 'DisableAll

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Zero-Crossing Detection”

 Solver Pane

1-35

1 Configuration Parameters Dialog Box

1-36

Maximum order

Select the order of the numerical differentiation formulas (NDFs) used in the ode15s
solver.

Settings

Default: 5

5

Specifies that the solver uses fifth order NDFs.
1

Specifies that the solver uses first order NDFs.
2

Specifies that the solver uses second order NDFs.
3

Specifies that the solver uses third order NDFs.
4

Specifies that the solver uses fourth order NDFs.

Tips

• Although the higher order formulas are more accurate, they are less stable.
• If your model is stiff and requires more stability, reduce the maximum order to 2 (the

highest order for which the NDF formula is A-stable).
• As an alternative, you can try using the ode23s solver, which is a lower order (and A-

stable) solver.

Dependencies

This parameter is enabled only if Solver is set to ode15s.

Command-Line Information
Parameter: MaxOrder
Type: integer
Value: 1 | 2 | 3 | 4 | 5
Default: 5

 Solver Pane

1-37

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “ Error Tolerances for Variable-Step Solvers”
• “How Performance Advisor Improves Simulation Performance”

1 Configuration Parameters Dialog Box

1-38

Solver reset method

Select how the solver behaves during a reset, such as when it detects a zero crossing.

Settings

Default: Fast

Fast

Specifies that the solver will not recompute the Jacobian matrix at a solver reset.
Robust

Specifies that the solver will recompute the Jacobian matrix needed by the
integration step at every solver reset.

Tips

• Selecting Fast speeds up the simulation. However, it can result in incorrect solutions
in some cases.

• If you suspect that the simulation is giving incorrect results, try the Robust setting.
If there is no difference in simulation results between the fast and robust settings,
revert to the fast setting.

Dependencies

This parameter is enabled only if you select one of the following solvers:

• ode15s (Stiff/NDF)

• ode23t (Mod. Stiff/Trapezoidal)

• ode23tb (Stiff/TR-BDF2)

Command-Line Information
Parameter: SolverResetMethod
Type: string
Value: 'Fast' | 'Robust'
Default: 'Fast'

Recommended Settings

Application Setting

Debugging No impact

 Solver Pane

1-39

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Choose a Solver”

1 Configuration Parameters Dialog Box

1-40

Number of consecutive min steps

Specify the maximum number of consecutive minimum step size violations allowed
during simulation.

Settings

Default: 1

• A minimum step size violation occurs when a variable-step continuous solver takes a
smaller step than that specified by the Min step size property (see “Min step size” on
page 1-28).

• Simulink software counts the number of consecutive violations that it detects. If
the count exceeds the value of Number of consecutive min steps, Simulink
software displays either a warning or error message as specified by the Min step size
violation diagnostic (see “Min step size violation” on page 1-215).

Dependencies

This parameter is enabled only if you set:

• Solver Type to Variable-step.
• Solver to a continuous variable step solver.

Command-Line Information
Parameter: MaxConsecutiveMinStep
Type: string
Value: any valid value
Default: '1'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Choose a Solver”

 Solver Pane

1-41

• “Min step size violation” on page 1-215
• “Min step size” on page 1-28

1 Configuration Parameters Dialog Box

1-42

Solver Jacobian Method

Settings

Default: Auto

auto

Sparse perturbation

Full perturbation

Sparse analytical

Full analytical

Tips

• The default setting (Auto) usually provides good accuracy for most models.

Dependencies

This parameter is enabled only if an implicit solver is used.

Command-Line Information
Parameter: SolverJacobianMethodControl
Type: string
Value: 'auto' | 'SparsePerturbation'|'FullPerturbation' |
'SparseAnalytical' |'FullAnalytical'
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Choose a Solver”

 Solver Pane

1-43

1 Configuration Parameters Dialog Box

1-44

Tasking mode for periodic sample times

Select how blocks with periodic sample times execute.

Settings

Default: Auto

Auto

Specifies that single-tasking execution is used if:

• Your model contains one sample time.
• Your model contains a continuous and a discrete sample time, and the fixed-step

size is equal to the discrete sample time.

Selects multitasking execution for models operating at different sample rates.
SingleTasking

Specifies that all blocks are processed through each stage of simulation together (for
example, calculating output and updating discrete states).

MultiTasking

Specifies that groups of blocks with the same execution priority are processed
through each stage of simulation (for example, calculating output and updating
discrete states) based on task priority. Multitasking mode helps to create valid
models of real-world multitasking systems, where sections of your model represent
concurrent tasks.

Tips

• For multirate models, Simulink treats an Auto setting as a MultiTasking setting.
• A model that is multirate and uses multitasking (that is, uses a setting of Auto or

MultiTasking) cannot reference a multirate model that uses a SingleTasking
setting.

• The Single task rate transition and Multitask rate transition parameters on the
Diagnostics > Sample Time pane allow you to adjust error checking for sample rate
transitions between blocks that operate at different sample rates.

•

Dependency

This parameter is enabled by selecting Fixed-step solver type.

 Solver Pane

1-45

Command-Line Information
Parameter: SolverMode
Type: string
Value: 'Auto' | 'SingleTasking' | 'MultiTasking'
Default: 'Auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Rate Transition block
• “Time-Based Scheduling”
• “Model Execution and Rate Transitions”
• “Handle Rate Transitions”
• “Solver Pane” on page 1-8

1 Configuration Parameters Dialog Box

1-46

Automatically handle rate transition for data transfer

Specify whether Simulink software automatically inserts hidden Rate Transition blocks
between blocks that have different sample rates to ensure: the integrity of data transfers
between tasks; and optional determinism of data transfers for periodic tasks.

Settings

Default: Off

 On
Inserts hidden Rate Transition blocks between blocks when rate transitions are
detected. Handles rate transitions for asynchronous and periodic tasks. Simulink
software adds the hidden blocks configured to ensure data integrity for data
transfers. Selecting this option also enables the parameter Deterministic data
transfer, which allows you to control the level of data transfer determinism for
periodic tasks.

 Off
Does not insert hidden Rate Transition blocks when rate transitions are detected. If
Simulink software detects invalid transitions, you must adjust the model such that
the sample rates for the blocks in question match or manually add a Rate Transition
block.

See “ Rate Transition Block Options” in the Simulink Coder™ documentation for further
details.

Tips

• Selecting this parameter allows you to handle rate transition issues automatically.
This saves you from having to manually insert Rate Transition blocks to avoid invalid
rate transitions, including invalid asynchronous-to-periodic and asynchronous-to-
asynchronous rate transitions, in multirate models.

• For asynchronous tasks, Simulink software configures the inserted blocks to ensure
data integrity but not determinism during data transfers.

Command-Line Information
Parameter: AutoInsertRateTranBlk
Type: string
Value: 'on' | 'off'

 Solver Pane

1-47

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact for simulation or during development

Off for production code generation
Efficiency No impact
Safety precaution Off

See Also

• “ Rate Transition Block Options”

1 Configuration Parameters Dialog Box

1-48

Deterministic data transfer

Control whether the Rate Transition block parameter Ensure deterministic data
transfer (maximum delay) is set for auto-inserted Rate Transition blocks

Default: Whenever possible

Always

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is always set for auto-inserted Rate Transition blocks.

If Always is selected and if a model needs to auto-insert a Rate Transition block to
handle a rate transition that is not between two periodic sample times related by an
integer multiple, Simulink errors out.

Whenever possible

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is set for auto-inserted Rate Transition blocks whenever possible.
If an auto-inserted Rate Transition block handles data transfer between two periodic
sample times that are related by an integer multiple, Ensure deterministic data
transfer (maximum delay) is set; otherwise, it is cleared.

Never (minimum delay)

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is never set for auto-inserted Rate Transition blocks.

Note: Clearing the Rate Transition block parameter Ensure deterministic data
transfer (maximum delay) can provide reduced latency for models that do not require
determinism. See the description of Ensure deterministic data transfer (maximum
delay) on the Rate Transition block reference page for more information.

Dependencies

This parameter is enabled only if Automatically handle rate transition for data
transfer is checked.

Command-Line Information
Parameter: InsertRTBMode
Type: string
Value: 'Always' | 'Whenever possible'| 'Never (minimum delay)'

 Solver Pane

1-49

Default: 'Whenever possible'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution 'Whenever possible'

See Also

• “ Rate Transition Block Options”

1 Configuration Parameters Dialog Box

1-50

Higher priority value indicates higher task priority

Specify whether the real-time system targeted by the model assigns higher or lower
priority values to higher priority tasks when implementing asynchronous data transfers

Settings

Default: Off

 On
Real-time system assigns higher priority values to higher priority tasks, for example,
8 has a higher task priority than 4. Rate Transition blocks treat asynchronous
transitions between rates with lower priority values and rates with higher priority
values as low-to-high rate transitions.

 Off
Real-time system assigns lower priority values to higher priority tasks, for example,
4 has a higher task priority than 8. Rate Transition blocks treat asynchronous
transitions between rates with lower priority values and rates with higher priority
values as high-to-low rate transitions.

Command-Line Information
Parameter: PositivePriorityOrder
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Rate Transitions and Asynchronous Blocks”

 Solver Pane

1-51

Zero-crossing control

Enables zero-crossing detection during variable-step simulation of the model. For most
models, this speeds up simulation by enabling the solver to take larger time steps.

Settings

Default: Use local settings

Use local settings

Specifies that zero-crossing detection be enabled on a block-by-block basis. For a list
of applicable blocks, see “Simulation Phases in Dynamic Systems”

To specify zero-crossing detection for one of these blocks, open the block's parameter
dialog box and select the Enable zero-crossing detection option.

Enable all

Enables zero-crossing detection for all blocks in the model.
Disable all

Disables zero-crossing detection for all blocks in the model.

Tips

• For most models, enabling zero-crossing detection speeds up simulation by allowing
the solver to take larger time steps.

• If a model has extreme dynamic changes, disabling this option can speed up the
simulation but can also decrease the accuracy of simulation results. See“Zero-
Crossing Detection” for more information.

• Selecting Enable all or Disable all overrides the local zero-crossing detection
setting for individual blocks.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Selecting either Use local settings or Enable all enables the following
parameters:

• Time tolerance
• Number of consecutive zero crossings

1 Configuration Parameters Dialog Box

1-52

• Algorithm

Command-Line Information
Parameter: ZeroCrossControl
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Zero-Crossing Detection”
• “Number of consecutive zero crossings” on page 1-55
• “Consecutive zero-crossings violation” on page 1-219
• “Time tolerance” on page 1-53

 Solver Pane

1-53

Time tolerance

Specify a tolerance factor that controls how closely zero-crossing events must occur to be
considered consecutive.

Settings

Default: 10*128*eps

• Simulink software defines zero crossings as consecutive if the time between events
is less than a particular interval. The following figure depicts a simulation timeline
during which Simulink software detects zero crossings ZC1 and ZC2, bracketed at
successive time steps t1 and t2.

Simulink software determines that the zero crossings are consecutive if

dt < RelTolZC * t2

where dt is the time between zero crossings and RelTolZC is the Time tolerance.
• Simulink software counts the number of consecutive zero crossings that it detects.

If the count exceeds the value of Number of consecutive zero crossings allowed,
Simulink software displays either a warning or error as specified by the Consecutive
zero-crossings violation diagnostic (see “Consecutive zero-crossings violation” on
page 1-219).

Tips

• Simulink software resets the counter each time it detects nonconsecutive zero
crossings (successive zero crossings that fail to meet the relative tolerance setting);
therefore, decreasing the relative tolerance value may afford your model's behavior
more time to recover.

1 Configuration Parameters Dialog Box

1-54

• If your model experiences excessive zero crossings, you can also increase the Number
of consecutive zero crossings to increase the threshold at which Simulink
software triggers the Consecutive zero-crossings violation diagnostic.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either Use local
settings or Enable all.

Command-Line Information
Parameter: ConsecutiveZCsStepRelTol
Type: string
Value: any valid value
Default: '10*128*eps'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Zero-Crossing Detection”
• “Number of consecutive zero crossings” on page 1-55
• “Zero-crossing control” on page 1-51
• “Consecutive zero-crossings violation” on page 1-219

 Solver Pane

1-55

Number of consecutive zero crossings

Specify the number of consecutive zero crossings that can occur before Simulink software
displays a warning or an error.

Settings

Default: 1000

• Simulink software counts the number of consecutive zero crossings that it detects. If
the count exceeds the specified value, Simulink software displays either a warning or
an error as specified by the Consecutive zero-crossings violation diagnostic (see
“Consecutive zero-crossings violation” on page 1-219).

• Simulink software defines zero crossings as consecutive if the time between events is
less than a particular interval (see “Time tolerance” on page 1-53).

Tips

• If your model experiences excessive zero crossings, you can increase this parameter to
increase the threshold at which Simulink software triggers the Consecutive zero-
crossings violation diagnostic. This may afford your model's behavior more time to
recover.

• Simulink software resets the counter each time it detects nonconsecutive zero
crossings; therefore, decreasing the relative tolerance value may also afford your
model's behavior more time to recover.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either Use local
settings or Enable all.

Command-Line Information
Parameter: MaxConsecutiveZCs
Type: string
Value: any valid value
Default: '1000'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-56

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Zero-Crossing Detection”
• “Zero-crossing control” on page 1-51
• “Consecutive zero-crossings violation” on page 1-219
• “Time tolerance” on page 1-53

 Solver Pane

1-57

Algorithm

Specifies the algorithm to detect zero crossings when a variable-step solver is used.

Settings

Default: Nonadaptive

Adaptive

Use an improved zero-crossing algorithm which dynamically activates and
deactivates zero-crossing bracketing. With this algorithm you can set a zero-crossing
tolerance. See “Signal threshold” on page 1-59 to learn how to set the zero-
crossing tolerance.

Nonadaptive

Use the nonadaptive zero-crossing algorithm present in the Simulink software prior
to Version 7.0 (R2008a). This option detects zero-crossings accurately, but might
cause longer simulation run times for systems with strong “chattering” or Zeno
behavior.

Tips

• The adaptive zero-crossing algorithm is especially useful in systems having strong
“chattering”, or Zeno behavior. In such systems, this algorithm yields shorter
simulation run times compared to the nonadaptive algorithm. See “Zero-Crossing
Detection” for more information.

Dependencies

• This parameter is enabled only if the solver Type is set to Variable-step.
• Selecting Adaptive enables the Signal threshold parameter.

Command-Line Information
Parameter: ZeroCrossAlgorithm
Type: string
Value: 'Nonadaptive' | 'Adaptive'
Default: 'Nonadaptive'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-58

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Zero-Crossing Detection”
• “Zero-crossing control” on page 1-51
• “Consecutive zero-crossings violation” on page 1-219
• “Time tolerance” on page 1-53
• “Number of consecutive zero crossings” on page 1-55

 Solver Pane

1-59

Signal threshold

Specifies the deadband region used during the detection of zero crossings. Signals falling
within this region are defined as having crossed through zero.

The signal threshold is a real number, greater than or equal to zero.

Settings

Default: Auto

Auto

The signal threshold is determined automatically by the adaptive algorithm.
String

Use the specified value for the signal threshold. The value must be a real number
equal to or greater than zero.

Tips

• Entering too small of a value for the Signal Threshold parameter will result in long
simulation run times.

• Entering a large Signal Threshold value may improve the simulation speed
(especially in systems having extensive chattering). However, making the value too
large may reduce the simulation accuracy.

Dependency

This parameter is enabled if the zero-crossing Algorithm is set to Adaptive.

Command-Line Information
Parameter: ZCThreshold
Type: string
Value: 'auto' | any real number greater than or equal to zero
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-60

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

• “Zero-Crossing Detection”
• “Zero-crossing control” on page 1-51
• “Consecutive zero-crossings violation” on page 1-219
• “Time tolerance” on page 1-53
• “Number of consecutive zero crossings” on page 1-55

 Solver Pane

1-61

Periodic sample time constraint

Select constraints on the sample times defined by this model. If the model does not
satisfy the specified constraints during simulation, Simulink software displays an error
message.

Settings

Default: Unconstrained

Unconstrained

Specifies no constraints. Selecting this option causes Simulink software to display a
field for entering the solver step size.

Use the Fixed-step size (fundamental sample time) option to specify solver step
size.

Ensure sample time independent

Specifies that Model blocks inherit sample time from the context in which they
are used. You cannot use a referenced model that has intrinsic sample times in a
triggered subsystem or iterator subsystem. If you plan on referencing this model
in a triggered or iterator subsystem, you should select Ensure sample time
independent so that Simulink can detect sample time problems while unit testing
this model.

• “Inherit Sample Times”
• “Inherited Sample Time for Referenced Models”
• “Function-Call Models”

Simulink software checks to ensure that this model can inherit its sample times from
a model that references it without altering its behavior. Models that specify a step
size (i.e., a base sample time) cannot satisfy this constraint. For this reason, selecting
this option causes Simulink software to hide the group's step size field (see “Fixed-
step size (fundamental sample time)” on page 1-64).

Specified

Specifies that Simulink software check to ensure that this model operates at a
specified set of prioritized periodic sample times. Use the Sample time properties
option to specify and assign priorities to model sample times.

“Execute Multitasking Models” explains how to use this option for multitasking
models.

1 Configuration Parameters Dialog Box

1-62

Tips

During simulation, Simulink software checks to ensure that the model satisfies the
constraints. If the model does not satisfy the specified constraint, then Simulink software
displays an error message.

Dependencies

This parameter is enabled only if the solver Type is set to Fixed-step.

Selecting Unconstrained enables the following parameters:

• Fixed-step size (fundamental sample time)
• Tasking mode for periodic sample times
• Higher priority value indicates higher task priority
• Automatically handle rate transitions for data transfers

Selecting Specified enables the following parameters:

• Sample time properties
• Tasking mode for periodic sample times
• Higher priority value indicates higher task priority
• Automatically handle rate transitions for data transfers

Command-Line Information
Parameter: SampleTimeConstraint
Type: string
Value: 'unconstrained' | 'STIndependent' | 'Specified'
Default: 'unconstrained'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Specified or Ensure sample time

independent

 Solver Pane

1-63

See Also

• “Inherit Sample Times”
• “Inherited Sample Time for Referenced Models”
• “Function-Call Models”
• “Fixed-step size (fundamental sample time)” on page 1-64
• “Execute Multitasking Models”

1 Configuration Parameters Dialog Box

1-64

Fixed-step size (fundamental sample time)

Specify the step size used by the selected fixed-step solver.

Settings

Default: auto

• Entering auto (the default) in this field causes Simulink to choose the step size.
• If the model specifies one or more periodic sample times, Simulink chooses a step size

equal to the greatest common divisor of the specified sample times. This step size,
known as the fundamental sample time of the model, ensures that the solver will take
a step at every sample time defined by the model.

• If the model does not define any periodic sample times, Simulink chooses a step size
that divides the total simulation time into 50 equal steps.

• If the model specifies no periodic rates and the stop time is Inf, Simulink uses 0.2 as
the step size. Otherwise, it sets the fixed-step size to

h
t tstop start

max
=

-

50

• For Sine and Signal Generator source blocks, if the stop time is Inf, Simulink
calculates the step size using this heuristic:

h
Freqmax

max

min . ,= () Ê
ËÁ

ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê
ËÁ

ˆ
¯̃

0 2
1

3

1

Otherwise, the step size is:

h
t t

Freq

stop start

max

max

min ,=
- Ê

ËÁ
ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ê
ËÁ

ˆ
¯̃50

1

3

1

where Freq
max

 is the maximum frequency (Hz) of these blocks in the model.

Dependencies

This parameter is enabled only if the Periodic sample time constraint is set to
Unconstrained.

 Solver Pane

1-65

Command-Line Information
Parameter: FixedStep
Type: string
Value: any valid value
Default: 'auto'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “ Modeling Dynamic Systems”

1 Configuration Parameters Dialog Box

1-66

Sample time properties

Specify and assign priorities to the sample times that this model implements.

Settings

No Default

• Enter an Nx3 matrix with rows that specify the model's discrete sample time
properties in order from fastest rate to slowest rate.

• Faster sample times must have higher priorities.

Format

[period, offset, priority]

period The time interval (sample rate) at which updates occur during the
simulation.

offset A time interval indicating an update delay. The block is updated
later in the sample interval than other blocks operating at the same
sample rate.

priority Execution priority of the real-time task associated with the sample
rate.

See “ Specify Sample Time” for more details and options for specifying sample time.

Example

[[0.1, 0, 10]; [0.2, 0, 11]; [0.3, 0, 12]]

• Declares that the model should specify three sample times.
• Sets the fundamental sample time period to 0.1 second.
• Assigns priorities of 10, 11, and 12 to the sample times.
• Assumes higher priority values indicate lower priorities — the Higher priority

value indicates higher task priority option is not selected.

Tips

• If the model's fundamental rate differs from the fastest rate specified by the model,
specify the fundamental rate as the first entry in the matrix followed by the specified
rates, in order from fastest to slowest. See “Purely Discrete Systems”.

 Solver Pane

1-67

• If the model operates at one rate, enter the rate as a three-element vector in this field
— for example, [0.1, 0, 10].

• When you update a model, Simulink software displays an error message if what you
specify does not match the sample times defined by the model.

• If Periodic sample time constraint is set to Unconstrained, Simulink software
assigns priority 40 to the model base sample rate. If Higher priority value
indicates higher task priority is selected, Simulink software assigns priorities 39,
38, 37, and so on, to subrates of the base rate. Otherwise, it assigns priorities 41, 42,
43, and so on, to the subrates.

• Continuous rate is assigned a higher priority than is the discrete base rate regardless
of whether Periodic sample time constraint is Specified or Unconstrained.

Dependencies

This parameter is enabled by selecting Specified from the Periodic sample time
constraint list.

Command-Line Information
Parameter: SampleTimeProperty
Type: structure
Value: any valid matrix
Default: []

Note: If you specify SampleTimeProperty at the command line, you must enter the
sample time properties as a structure with the following fields:

• SampleTime

• Offset

• Priority

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

1 Configuration Parameters Dialog Box

1-68

Application Setting

Safety precaution Period, offset, and priority of each sample time in
the model; faster sample times must have higher
priority than slower sample times

See Also

• “Purely Discrete Systems”
• “ Specify Sample Time”

 Solver Pane

1-69

Extrapolation order

Select the extrapolation order used by the ode14x solver to compute a model's states at
the next time step from the states at the current time step.

Settings

Default: 4

1

Specifies first order extrapolation.
2

Specifies second order extrapolation.
3

Specifies third order extrapolation.
4

Specifies fourth order extrapolation.

Tip

Selecting a higher order produces a more accurate solution, but is more computationally
intensive per step size.

Dependencies

This parameter is enabled by selecting ode14x (extrapolation) from the Solver list.

Command-Line Information
Parameter: ExtrapolationOrder
Type: integer
Value: 1 | 2 | 3 | 4
Default: 4

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-70

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

• “Choose a Fixed-Step Solver”

 Solver Pane

1-71

Number Newton's iterations

Specify the number of Newton's method iterations used by the ode14x solver to compute
a model's states at the next time step from the states at the current time step.

Settings

Default: 1
Minimum: 1
Maximum: 2147483647

More iterations produce a more accurate solution, but are more computationally
intensive per step size.

Dependencies

This parameter is enabled by selecting ode14x (extrapolation) from the Solver list.

Command-Line Information
Parameter: NumberNewtonIterations
Type: integer
Value: any valid number
Default: 1

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Choose a Fixed-Step Solver”
• “Purely Discrete Systems”

1 Configuration Parameters Dialog Box

1-72

Allow tasks to execute concurrently on target

Enable concurrent tasking behavior for model.

Settings

Default: On

 On
Enable the model to be configured for concurrent tasking.

 Off
Disable the model from being configured for concurrent tasking.

Tip

• If the referenced mode has a single rate, you do not need to select this check box to
enable concurrent tasking behavior.

• To remove this parameter, in the Model Explorer right-click and select
Configuration > Hide Concurrent Execution options.

Dependencies

This parameter check box is visible only if you convert an existing configuration set to
one for concurrent execution. To enable this parameter, in the Model Explorer hierarchy
pane, right-click and select Configuration > Show Concurrent Execution options.
The Dialog pane is displayed with the Allow tasks to execute concurrently on
target check box and a Configure Tasks button.

• If this parameter check box is selected when you click the Configure Tasks button,
the Concurrent Execution dialog box is displayed.

• If this parameter check box is cleared, the following parameters are enabled:

• Periodic sample time constraint
• Tasking mode for periodic sample times
• Automatically handle rate transition for data transfer
• Higher priority value indicates higher task priority

• To make this parameter check box and button visible with the command-line
information, set the EnableConcurrentExecution to 'on'. By default, this
parameter is set to 'off'.

 Solver Pane

1-73

Command-Line Information

Parameter: ConcurrentTasks
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution 0.0

See Also

• “Concurrent Execution Window: Main Pane” on page 6-2

1 Configuration Parameters Dialog Box

1-74

Data Import/Export Pane

In this section...

“Data Import/Export Overview” on page 1-76
“Input” on page 1-77
“Initial state” on page 1-79
“Time” on page 1-81
“States” on page 1-83

 Data Import/Export Pane

1-75

In this section...

“Output” on page 1-85
“Final states” on page 1-87
“Format” on page 1-89
“Limit data points to last” on page 1-92
“Decimation” on page 1-94
“Save complete SimState in final state” on page 1-96
“Signal logging” on page 1-98
“Signal logging format” on page 1-101
“Data stores” on page 1-104
“Output options” on page 1-106
“Refine factor” on page 1-108
“Output times” on page 1-110
“Save simulation output as single object” on page 1-111
“Logging intervals” on page 1-113
“Record logged workspace data in Simulation Data Inspector” on page 1-116
“Enable live streaming of selected signals to Simulation Data Inspector” on page
1-118
“Write streamed signals to workspace” on page 1-119

1 Configuration Parameters Dialog Box

1-76

Data Import/Export Overview

The Data Import/Export pane allows you to import input signal and initial state data
from a workspace and export output signal and state data to the MATLAB® workspace
during simulation. This capability allows you to use standard or custom MATLAB
functions to generate a simulated system's input signals and to graph, analyze, or
otherwise postprocess the system's outputs.

Configuration

1 Specify the data to load from a workspace before simulation begins.
2 Specify the data to save to the MATLAB workspace after simulation completes.

Tips

• To open the Data Import/Export pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Data Import/Export.

• For more information importing and exporting data, see “Load Signal Data for
Simulation” and “Save Runtime Data from Simulation”.

• See the documentation of the sim command for some capabilities that are available
only for programmatic simulation.

See Also

• Importing Data from a Workspace
• “Export Simulation Data”
• “Export Signal Data Using Signal Logging”
• Data Import/Export Pane

 Data Import/Export Pane

1-77

Input

Loads input data from a workspace before the simulation begins.

Settings

Default: Off, [t,u]

 On
Loads data from a workspace.

Specify a MATLAB expression for the data to be imported from a workspace. The
Simulink software resolves symbols used in this specification as described in “Symbol
Resolution”.

See “Import Data to Root-Level Input Ports” for information on how to use this field.

 Off
Does not load data from a workspace.

Tips

• You must select the Input check box before entering input data.
• Simulink software linearly interpolates or extrapolates input values as necessary if

the Interpolate data option is selected for the corresponding Inport.
• The use of the Input box is independent of the setting of the Format list on the Data

Import/Export pane.

Command-Line Information
Parameter: LoadExternalInput
Type: string
Value: 'on' | 'off'
Default: 'off'
Parameter: ExternalInput
Type: string
Value: any valid value
Default: '[t,u]'

1 Configuration Parameters Dialog Box

1-78

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Import Data to Root-Level Input Ports”
• Data Import/Export Pane

 Data Import/Export Pane

1-79

Initial state

Loads the model's initial states from a workspace before simulation begins.

Settings

Default: Off, xInitial

 On
Simulink software loads initial states from a workspace.

Specify the name of a variable that contains the initial state values, for example, a
variable containing states saved from a previous simulation.

Use the structure or structure-with-time option to specify initial states if you want to
accomplish any of the following:

• Associate initial state values directly with the full path name to the states. This
eliminates errors that could occur if Simulink software reorders the states, but
the initial state array is not correspondingly reordered.

• Assign a different data type to each state's initial value.
• Initialize only a subset of the states.
• Initialize the states of a top model and the models that it references

See “Load State Information” for more information.

 Off
Simulink software does not load initial states from a workspace.

Tips

• The initial values that the workspace variable specifies override the initial values
that the model specifies (the values that the initial condition parameters of those
blocks in the model that have states specify).

• Selecting the Initial state check box does not result in Simulink initializing discrete
states in referenced models.

• If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

1 Configuration Parameters Dialog Box

1-80

Command-Line Information
Parameter: LoadInitialState
Type: string
Value: 'on' | 'off'
Default: 'off'
Parameter: InitialState
Type: variable (string) or vector
Value: any valid value
Default: 'xInitial'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• Importing Data from a Workspace
• “State Information”
• Data Import/Export Pane
• “Data Set Conversion for Logged Data”

 Data Import/Export Pane

1-81

Time

Saves simulation time data to the specified variable during simulation.

Settings

Default: On, tout

 On
Simulink software exports time data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store time data. See “Export
Simulation Data” for more information.

 Off
Simulink software does not export time data to the MATLAB workspace during
simulation.

Tips

• You must select the Time check box before entering the time variable.
• Simulink software saves the output to the MATLAB workspace at the base sample

rate of the model. Use a To Workspace block if you want to save output at a different
sample rate.

• The Time, State, Output area includes parameters for specifying a limit on the
number of data points to export and the decimation factor.

• To specify an interval for logging, use the Logging intervals parameter.
• If you use a format other than Dataset, you can convert the logged data to Dataset

format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveTime
Type: string
Value: 'on' | 'off'
Default: 'on'
Parameter: TimeSaveName
Type: string
Value: any valid value

1 Configuration Parameters Dialog Box

1-82

Default: 'tout'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Export Simulation Data”
• Data Import/Export Pane

 Data Import/Export Pane

1-83

States

Saves state data to the specified MATLAB variable during a simulation.

Settings

Default: Off, xout

 On
Simulink software exports state data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store state data. See Importing
and Exporting States for more information.

 Off
Simulink does not export state data during simulation.

Tips

• Simulink saves the states in a MATLAB workspace variable having the specified
name.

• The saved data has the format that you specify with the Format parameter.
• If you select the States check box, Simulink logs fixed-point states only if you set the

Format parameter to Dataset.
• Simulink creates empty variables for state logging (xout) if both of these conditions

apply:

• You enable States.
• A model has no states.

• To specify an interval for logging, use the Logging intervals parameter.
• If you use a format other than Dataset, you can convert the logged data to Dataset

format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveState
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Configuration Parameters Dialog Box

1-84

Parameter: StateSaveName
Type: string
Value: any valid value
Default: 'xout'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “State Information”
• “Techniques for Importing Signal Data”
• Data Import/Export Pane

 Data Import/Export Pane

1-85

Output

Saves signal data to the specified MATLAB variable during simulation.

Settings

Default: On, yout

 On
Simulink software exports signal data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store signal data. See “Export
Simulation Data” for more information.

 Off
Simulink software does not export signal data during simulation.

Tips

• You must select the Output check box before entering the output variable.
• Simulink software saves the output to the MATLAB workspace at the base sample

rate of the model, if you set the Format parameter to a value other than Dataset.
For Dataset format, logging the set the rate for each Outport block.

• The Time, State, Output area includes parameters for specifying the format and
other characteristics of the saved data (for example, the format for the saved data and
the decimation factor).

• To specify an interval for logging, use the Logging intervals parameter.
• To log fixed-point data, set the Format parameter to Dataset. If you set the Format

parameter to a value other than Dataset, Simulink logs fixed-point data as double.
• If you use a format other than Dataset, you can convert the logged data to Dataset

format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveOutput
Type: string
Value: 'on' | 'off'
Default: 'on'
Parameter: OutputSaveName

1 Configuration Parameters Dialog Box

1-86

Type: string
Value: any valid value
Default: 'yout'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Export Simulation Data”
• Data Import/Export Pane
• “Data Set Conversion for Logged Data”

 Data Import/Export Pane

1-87

Final states

Saves the logged states of the model at the end of a simulation to the specified MATLAB
variable.

Settings

Default: Off, xFinal

 On
Simulink software exports final logged state data to the MATLAB workspace during
simulation.

Specify the name of the MATLAB variable in which to store the values of these final
states. See Importing and Exporting States for more information.

 Off
Simulink software does not export the final state data during simulation.

Tips

• You must select the Final states check box before entering the final states variable.
• Simulink software saves the final states in a MATLAB workspace variable having the

specified name.
• The saved data has the format that you specify with the Format parameter.
• Simulink creates empty variables for final state logging (xfinal) if both of these

conditions apply:

• You enable Final states.
• A model has no states.

• Using the Final states is not always sufficient for complete and accurate restoration
of a simulation state. The SimState object contains the set of all variables that are
related to the simulation of a model. For details, see “Save complete SimState in final
state” on page 1-96 and “Save and Restore Simulation State as SimState”.

• See “State Information” for more information.
• If you use a format other than Dataset, you can convert the logged data to Dataset

format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

1 Configuration Parameters Dialog Box

1-88

Command-Line Information
Parameter: SaveFinalState
Type: string
Value: 'on' | 'off'
Default: 'off'
Parameter: FinalStateName
Type: string
Value: any valid value
Default: 'xFinal'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• Importing and Exporting States
• Data Import/Export Pane
• “Data Set Conversion for Logged Data”

 Data Import/Export Pane

1-89

Format

Select the data format for saving states, output, and final states data.

Settings

Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the logged
data as MATLAB timeseries objects.

Array

The format of the data is a matrix. Each row corresponds to a simulation time step.
Structure

For logging output, the format of the data is a structure that contains substructures
for each port. Each port substructure contains signal data for the corresponding port.
For logging states, the structure contains a substructure for each block that has a
state.

Structure with time

The format of the data is a structure that has two fields: a time field and a signals
field. The time field contains a vector of simulation times. The signals field contains
the same data as the Structure format.

Tips

• The Dataset format for logged state and root outport data:

• Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logged data in MATLAB without a
Simulink license.

• Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow® signal logging.

• Does not support logging nonvirtual bus data for code generation or rapid
accelerator mode.

• You can use array format to save your model's outputs and states only if the outputs:

• Are all scalars or all vectors (or all matrices for states)

1 Configuration Parameters Dialog Box

1-90

• Are all real or all complex
• Have the same data type

Use the Dataset, Structure, or Structure with time output formats (see
Structure with time) if your model's outputs and states do not meet these conditions.

• If you enable the Save complete SimState in final state parameter, then the
format does not apply to final states data.

• Simulink can read back simulation data saved to the workspace in the Structure
with time output format. See “Import Data to Root-Level Input Ports” for more
information.

• To specify the format for signal logging data, use the Signal logging format
parameter.

• If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveFormat
Type: string
Value: 'Array' | 'Structure' | 'StructureWithTime' | 'Dataset'
Default: 'Dataset'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Export Simulation Data”
• “Time, State, and Output Data Format”
• Data Import/Export Pane
• “Data Set Conversion for Logged Data”

 Data Import/Export Pane

1-91

1 Configuration Parameters Dialog Box

1-92

Limit data points to last

Limit the number of data points to export to the MATLAB workspace.

Settings

Default: On, 1000

 On
Limits the number of data points exported to the MATLAB workspace to the number
that you specify.

Specify the maximum number of data points to export to the MATLAB workspace.
At the end of the simulation, the MATLAB workspace contains the last N points
generated by the simulation.

 Off
Does not limit the number of data points.

Tips

• Saving data to the MATLAB workspace can consume memory. Use this parameter to
limit the number of samples saved to help avoid this problem.

• You can also apply a Decimation factor to skip a selected number of samples.

Command-Line Information
Parameter: LimitDataPoints
Type: string
Value: 'on' | 'off'
Default: 'on'
Parameter: MaxDataPoints
Type: string
Value: any valid value
Default: '1000'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

 Data Import/Export Pane

1-93

Application Setting

Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Export Simulation Data”
• Data Import/Export Pane

1 Configuration Parameters Dialog Box

1-94

Decimation

Specify that Simulink software output only every N points, where N is the specified
decimation factor.

Settings

Default: 1

• The default value (1) specifies that all data points are saved.
• The value must be a positive integer greater than zero.
• Simulink software outputs data only at the specified number of data points. For

example, specifying 2 saves every other data point, while specifying 10 saves just one
in ten data points.

• At the end of the simulation, the total number of data points is reduced by the factor
specified.

Tips

• Saving data to the MATLAB workspace can consume memory. Use this parameter to
limit the number of samples saved to help avoid this problem.

• You can also use the Limit data points to last parameter to help resolve this
problem.

Command-Line Information
Parameter: Decimation
Type: string
Value: any valid value
Default: '1'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

 Data Import/Export Pane

1-95

See Also

• “Export Simulation Data”
• Data Import/Export Pane

1 Configuration Parameters Dialog Box

1-96

Save complete SimState in final state

At the end of a simulation, Simulink saves the complete set of states of the model,
including logged states, to the specified MATLAB variable.

Settings

Default: Off, xFinal

 On
Simulink software exports the complete set of final state data (i.e., the SimState) to
the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of the final
states. See Importing and Exporting States for more information.

 Off
Simulink software exports the final logged states during simulation.

Tips

• You must select the Final states check box to enable the Save complete SimState
in final state option.

• Simulink saves the final states in a MATLAB workspace variable having the specified
name.

Dependencies

This parameter is enabled by Final states.

Command-Line Information
Parameter: SaveCompleteFinalSimState
Type: string
Value: 'on' | 'off'
Default: 'off'
Parameter: FinalStateName
Type: string
Value: any valid value
Default: 'xFinal'

 Data Import/Export Pane

1-97

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Importing and Exporting States
• Data Import/Export Pane
• “Limitations of SimState”

1 Configuration Parameters Dialog Box

1-98

Signal logging

Globally enable or disable signal logging for this model.

Settings

Default: On, logsout

 On
Enables signal logging to the MATLAB workspace during simulation.

Specify the name of the signal logging object used to record logged signal data in
the MATLAB workspace. For more information, see “Specify a Name for the Signal
Logging Data for a Model”.

 Off
Disables signal logging to the MATLAB workspace during simulation.

Tips

• You must select the Signal logging check box before entering the signal logging
variable.

• Simulink saves the signal data in a MATLAB workspace variable having the specified
name.

• The saved data has the format that you specify with the Signal logging format
parameter.

• Simulink does not support signal logging for the following types of signals:

• Output of a Function-Call Generator block
• Signal connected to the input of a Merge block
• Outputs of Trigger and Enable blocks

• If you select Signal logging, you can use the Configure Signals to Log button to
open the Signal Logging Selector. You can use the Signal Logging Selector to:

• Review all signals in a model hierarchy that are configured for logging
• Override signal logging settings for specific signals
• Control signal logging throughout a model reference hierarchy in a streamlined

way

 Data Import/Export Pane

1-99

You can use the Signal Logging Selector with Simulink and Stateflow signals.

For details about the Signal Logging Selector, see “Use Signal Logging Selector to
View Signal Logging Configuration” and “Override Signal Logging Settings”.

Dependencies

This parameter enables:

• Signal logging format
• The Configure Signals to Log button

Command-Line Information
Parameter: SignalLogging
Type: string
Value: 'on' | 'off'
Default: 'on'
Parameter: SignalLoggingName
Type: string
Value: any valid value
Default: 'logsout'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Efficiency No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Export Signal Data Using Signal Logging”
• Data Import/Export Pane
• “Data Set Conversion for Logged Data”

1 Configuration Parameters Dialog Box

1-100

 Data Import/Export Pane

1-101

Signal logging format

Specify format for signal logging data for this model.

Settings

Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the logged
signal data as MATLAB timeseries objects.

ModelDataLogs

Simulink uses a Simulink.ModelDataLogs object to store the logged signal data,
using Simulink.Timeseries and Simulink.TsArray objects.

This setting is supported for backward compatibility. Prior to R2012b, the default
signal logging format was ModelDataLogs. The ModelDataLogs format will be
removed in a future release. For an existing model that uses the ModelDataLogs
format, you should migrate the model to use Dataset format. For details, see
“Migrate from ModelDataLogs to Dataset Format”.

Tips

• You must select Signal logging before specifying the signal logging format.
• The Dataset format:

• Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logged data in MATLAB without a
Simulink license.

• Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow signal logging

• Provides an easy to analyze format for logged signal data for models with deep
hierarchies, bus signals, and signals with duplicate or non-standard names.

• Avoids the limitations of the ModelDataLogs format. For example, for a virtual
bus, logging only logs one of multiple signals that share the same source block. See
Bug Report 495436 for a description of the ModelDataLogs limitations.

• Simulink checks signal logging data format consistency for certain model
referencing configurations. For details, see “Model Reference Signal Logging Format

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=

1 Configuration Parameters Dialog Box

1-102

Consistency”. You can use the Upgrade Advisor (with the upgradeadvisor function)
to upgrade a model to use Dataset format.

• An alternative approach for handling reported inconsistencies is to use the
Simulink.SimulationData.updateDatasetFormatLogging function to update
the models to use Dataset format. This approach sets the Model Configuration
Parameters > Data Import/Export > Signal logging format parameter to
Dataset for each referenced model and each variant.

• If you have logged signal data in the ModelDataLogs format, you can use
the Simulink.ModelDataLogs.convertToDataset function to convert the
ModelDataLogs data to Dataset format.

• Dataset format is required to log array of buses data.
• If you use a format other than Dataset, you can convert the logged data to Dataset

format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Simulink uses the Simulink.SimulationData.Dataset data format for logging data
stores.

For additional information about specifying the signal logging format, see “Specify the
Signal Logging Data Format”.

Command-Line Information
Parameter: SignalLoggingSaveFormat
Type: string
Value: 'Dataset' | 'ModelDataLogs'
Default: 'Dataset'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Export Signal Data Using Signal Logging”

 Data Import/Export Pane

1-103

• “Specify the Signal Logging Data Format”
• Data Import/Export Pane
• Simulink.ModelDataLogs

• Simulink.SimulationData.Dataset

1 Configuration Parameters Dialog Box

1-104

Data stores

Globally enable or disable logging of Data Store Memory block variables for this model.

Settings

Default: On, dsmsout

 On
Enables data store logging to the MATLAB workspace during simulation.

Specify the name of the data store logging object to use for recording logged data
store data. The data store logging object must be in the MATLAB workspace.

 Off
Disables data store logging to the MATLAB workspace during simulation.

Tips

• Simulink saves the data in a MATLAB workspace variable having the specified name.
• The saved data has the Simulink.SimulationData.Dataset format.
• See “Supported Data Types, Dimensions, and Complexity for Logging Data

Stores”“Data Store Logging Limitations” and “Data Store Logging Limitations”.

Dependencies

Select the Data stores check box before entering the data store logging variable.

Command-Line Information
Parameter: DSMLogging
Type: string
Value: 'on' | 'off'
Default: 'on'
Parameter: DSMLoggingName
Type: string
Value: any valid value
Default: 'dsmOut'

Recommended Settings

Application Setting

Debugging No impact

 Data Import/Export Pane

1-105

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Log Data Stores”
• “Export Signal Data Using Signal Logging”
• Data Import/Export Pane
• Simulink.SimulationData.DataStoreMemory

• Data Store Memory

1 Configuration Parameters Dialog Box

1-106

Output options

Select options for generating additional output signal data for variable-step solvers.

Settings

Default: Refine output

Refine output

Generates data output between, as well as at, simulation times steps. Use Refine
factor to specify the number of points to generate between simulation time steps.
For more information, see “Refine Output”.

Produce additional output

Generates additional output at specified times. Use Output times to specify the
simulation times at which Simulink software generates additional output.

Produce specified output only

Use Output times to specify the simulation times at which Simulink generates
output, in addition to the simulation start and stop times.

Tips

• These settings can force the solver to calculate output values for times that it would
otherwise have omitted because the calculations were not needed to achieve accurate
simulation results. These extra calculations can cause the solver to locate zero
crossings that it would otherwise have missed.

• For additional information on how Simulink software calculates outputs for these
three options, see “Samples to Export for Variable-Step Solvers”.

Dependencies

This parameter is enabled only if the model specifies a variable-step solver (see Solver
Type).

Selecting Refine output enables the Refine factor parameter.

Selecting Produce additional output or Produce specified output only
enables the Output times parameter.

Command-Line Information
Parameter: OutputOption

 Data Import/Export Pane

1-107

Type: string
Value: 'RefineOutputTimes' | 'AdditionalOutputTimes' |
'SpecifiedOutputTimes'

Default: 'RefineOutputTimes'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Output Options”
• Refine factor
• “Refine Output”
• “Export Simulation Data”
• Data Import/Export Pane

1 Configuration Parameters Dialog Box

1-108

Refine factor

Specify how many points to generate between time steps to refine the output.

Settings

Default: 1

• The default refine factor is 1, meaning that no extra data points are generated.
• A refine factor of 2 provides output midway between the time steps, as well as at the

steps.

Tip

Simulink software ignores this option for discrete models. This is because the value of
data between time steps is undefined for discrete models.

Dependency

This parameter is enabled only if you select Refine output as the value of Output
options.

Command-Line Information
Parameter: Refine
Type: string
Value: any valid value
Default: '1'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Refine Output”

 Data Import/Export Pane

1-109

• Data Import/Export Pane

1 Configuration Parameters Dialog Box

1-110

Output times

Specify times at which Simulink software should generate output in addition to, or
instead of, the times of the simulation steps taken by the solver used to simulate the
model.

Settings

Default: []

• Enter a matrix containing the times at which Simulink software should generate
output in addition to, or instead of, the simulation steps taken by the solver.

• If the value of Output options is Produce additional output, for the default
value [], Simulink generates no additional data points.

• If the value of Output options is Produce specified output only, for the
default value [] Simulink generates no data points.

Tips

• The Produce additional output option generates output at the specified times,
as well as at the regular simulation steps.

• The Produce specified output only option generates output at the specified
times.

• Discrete models define outputs only at major time steps. Therefore, Simulink software
logs output for discrete models only at major time steps. If the Output times field
specifies other times, Simulink displays a warning at the MATLAB command line.

• For additional information on how Simulink software calculates outputs for the
Output options Produce specified output only and Produce additional
output options, see “Samples to Export for Variable-Step Solvers”.

Dependency

This parameter is enabled only if the value of Output options is Produce additional
output or Produce specified output only.

Command-Line Information
Parameter: OutputTimes
Type: string
Value: any valid value
Default: '[]'

 Data Import/Export Pane

1-111

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

• “Refine Output”
• Data Import/Export Pane

Save simulation output as single object

Enable the single-output format of the sim command.

Settings

Default: off

When you enable this option:

• Simulink returns all simulation outputs within a single
Simulink.SimulationOutput object, providing that you simulate by choosing
Simulation > Start from the model window.

• You must specify the variable name of the single output object which will contain the
simulation outputs. Use the text field next to the check box to specify this name.

• The sim command becomes compatible with the parfor command, in terms of
transparency issues.

• The setting overrides the Dataset selection for Signal logging format in the Data
Import/Export pane.

Tips

• To use the Logging intervals parameter, you must select Save simulation output
as single object.

1 Configuration Parameters Dialog Box

1-112

• If you select this option and you simulate by entering the sim command at the
command line of the MATLAB command window, then the output variables will not
be stored in the object 'out'. Instead, they will be stored in their respective variable
names. This design is necessary to avoid workspace issues when sim is called from
within a parfor loop.

• The method who of the Simulink.SimulationOutput object returns the list of
variables that the object contains.

• Use the get method of the Simulink.SimulationOutput object to access the
variables that the object contains.

Command-Line Information
Parameter: ReturnWorkspaceOutputs
Type: string
Value: 'on' | 'off' |
Default: 'off'

Parameter: ReturnWorkspaceOutputsName
Type: string
Value: Any valid value
Default: 'Out'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Data Import/Export Pane” on page 1-74
• “Run Simulation Using the sim Command”
• “Run Parallel Simulations”

 Data Import/Export Pane

1-113

Logging intervals

Set intervals for logging

Settings

Default:[-inf,inf]

• Use a real double matrix with two columns.
• The matrix elements cannot be NaN.
• You can specify as many intervals as you want.
• Each row defines the start and end times for an interval.
• Intervals must be disjoint and ordered. For example, you can specify these three

intervals: [1,5;6,10;11,15]

Tips

• The logging intervals apply to data logged for:

• Time
• States
• Output
• Signal logging
• The To Workspace block
• The To File block

The logging intervals do not apply to final state logged data, scopes or streaming data
to the Simulation Data Inspector.

• PIL simulation mode does not support logging intervals. Simulink ignores specified
logging intervals, without displaying a warning.

• SIL simulation mode supports logging intervals for data logged to a
Simulink.SimulationOutput object. In SIL mode, Simulink ignores specified
logging intervals, without displaying a warning, for:

• Data logged to a To File block
• MAT-file logging (enabled with the Configuration Parameters > Code

Generation > Interface > MAT-file logging parameter)
• The interval times that meet either of these two conditions do not return logged data:

1 Configuration Parameters Dialog Box

1-114

• The time is before the simulation start time.
• The time is after the simulation stop time.

Interval times that meet these conditions do not cause a warning.
• All logged data, except for data logged to a To File block, is stored in the object you

specify for the Save simulation output as single object parameter. Data for the To
File block reflects the specified intervals, but is stored in the file associated with the
block.

• To prevent logging of To Workspace blocks, set Logging intervals to an empty
matrix ([]).

•
• If you set Decimation to 2, then the logged data is for alternating times in the

intervals. In other words, data is for times 2, 4, and 8.
• If you set Limit data points to last to 4, then the logged data is for the last four

times in the intervals. In other words, data is for times 4, 7, 8, and 9.
• Simulation Stepper rollback reflects logging intervals. If you change the logging

intervals of a simulation before rollback, logging:

• Includes data starting with the first step after the rollback
• Does not include data for time steps that are outside of the original logging

intervals

Dependency

This parameter is enabled only if you select the Save simulation output as single
object parameter.

Command-Line Information
Parameter: LoggingIntervals
Type: real double matrix with two columns
Default: [-inf,inf]

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

 Data Import/Export Pane

1-115

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

• “Data Import/Export Pane” on page 1-74
• “Run Simulation Using the sim Command”

1 Configuration Parameters Dialog Box

1-116

Record logged workspace data in Simulation Data Inspector

Specify whether to send signals marked for logging to the Simulation Data Inspector
after simulation pauses or completes.

Settings

Default: Off

 On
Record logged signals and send signal data to the Simulation Data Inspector
after a simulation pauses or completes. This setting turns on the record state on
the Simulation Data Inspector button on the Simulink Editor toolbar. After a
simulation is recorded, the logged simulation data appears in the Runs pane of the
Simulation Data Inspector.

 Off
Do not record logged signals during simulation. This setting turns off the record state
on the Simulation Data Inspector button on the Simulink Editor toolbar.

Tip

To open the Simulation Data Inspector, on the Simulink Editor toolbar, click the
Simulation Data Inspector button arrow and select Simulation Data Inspector.

Command-Line Information
Parameter: InspectSignalLogs
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

 Data Import/Export Pane

1-117

See Also

• “Load Signal Data for Simulation”
• “Record Logged Simulation Data”
• “Inspect Signal Data”
• “Customize the Simulation Data Inspector Interface”

1 Configuration Parameters Dialog Box

1-118

Enable live streaming of selected signals to Simulation Data Inspector

Specify whether to send signals marked for streaming to the Simulation Data
Inspector during simulation.

Settings

Default: On

 On
Send signals marked for streaming to the Simulation Data Inspector during
simulation. This setting turns on the streaming state on the Simulation Data
Inspector button on the Simulink Editor toolbar. During simulation, the simulation
data appears in the Runs pane in the Simulation Data Inspector. To view a
streaming signal during simulation, open the Simulation Data Inspector, and select
the signal check box in the Runs pane.

 Off
Do not send signals marked for streaming to the Simulation Data Inspector during
simulation. This setting turns off the live streaming state on the Simulation Data
Inspector button on the Simulink Editor toolbar.

Tip

To open the Simulation Data Inspector, on the Simulink Editor toolbar, click the
Simulation Data Inspector button arrow and select Simulation Data Inspector.

Command-Line Information
Parameter: VisualizeSimOutput
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

 Data Import/Export Pane

1-119

Application Setting

Safety precaution No impact for simulation or during development
Off for production code generation

See Also

• “Stream Data to the Simulation Data Inspector”
• “Inspect Signal Data”
• “Customize the Simulation Data Inspector Interface”

Write streamed signals to workspace

Specify whether to write streamed signal data to the base workspace

Settings

Default: Off

 On
Send signals marked for streaming to the base workspace after simulation. The
dataset is saved in the base workspace as a Simulink.SimulationData.Signal
object as the name specified in the text field. The default name is 'streamout'.

 Off
Do not send signals marked for streaming to the base workspace after simulation.

Command-Line Information
Parameter: StreamToWorkspace
Type: string
Value: 'on' | 'off'
Default: 'off'
Parameter: StreamVariableName
Type: string
Value: any valid value
Default: 'streamout'

See Also

• “Stream Data to the Simulation Data Inspector”

1 Configuration Parameters Dialog Box

1-120

Optimization Pane: General

The Optimization > General pane includes the following parameters:

In this section...

“Optimization Pane: General Tab Overview” on page 1-122
“Block reduction” on page 1-123
“Conditional input branch execution” on page 1-126
“Implement logic signals as Boolean data (vs. double)” on page 1-129
“Application lifespan (days)” on page 1-131
“Use division for fixed-point net slope computation” on page 1-134
“Use floating-point multiplication to handle net slope corrections” on page 1-136
“Default for underspecified data type” on page 1-138
“Optimize using the specified minimum and maximum values” on page 1-140

 Optimization Pane: General

1-121

In this section...

“Remove root level I/O zero initialization” on page 1-143
“Use memset to initialize floats and doubles to 0.0” on page 1-145
“Remove internal data zero initialization” on page 1-147
“Optimize initialization code for model reference” on page 1-149
“Remove code from floating-point to integer conversions that wraps out-of-range values”
on page 1-151
“Remove code from floating-point to integer conversions with saturation that maps NaN
to zero” on page 1-153
“Remove code that protects against division arithmetic exceptions” on page 1-155
“Compiler optimization level” on page 1-157
“Verbose accelerator builds” on page 1-159

1 Configuration Parameters Dialog Box

1-122

Optimization Pane: General Tab Overview

Set up optimizations for a model's active configuration set. Optimizations are set for both
simulation and code generation.

Tips

• To open the Optimization pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Optimization.

• Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system. Selecting a GRT-based or ERT-based system target file
changes the available options. ERT-based target optimizations require a Embedded
Coder® license when generating code. See the Dependencies sections below for
licensing information for each parameter.

See Also

• “Optimization Pane: General” on page 1-120
• “Perform Acceleration”
• For code generation, see “Performance”

 Optimization Pane: General

1-123

Block reduction

Reduce execution time by collapsing or removing groups of blocks.

Settings

Default: On

 On
Simulink software searches for and reduces the following block patterns:

• Redundant type conversions — Unnecessary type conversion blocks, such as
an int type conversion block with an input and output of type int.

• Dead code — Blocks or signals in an unused code path.
• Fast-to-slow Rate Transition block in a single-tasking system — Rate

Transition blocks with an input frequency faster than its output frequency.

 Off
Simulink software does not search for block patterns that can be optimized.
Simulation and generated code are not optimized.

Tips

• When you select Block reduction, Simulink software collapses certain groups of
blocks into a single, more efficient block, or removes them entirely. This results in
faster execution during model simulation and in generated code.

• Block reduction does not change the appearance of the source model.
• Tunable parameters do not prevent a block from being reduced by dead code

elimination.
• Once block reduction takes place, Simulink software does not display the sorted order

for blocks that have been removed.
• If you have a Simulink Coder license, block reduction is intended to remove only the

generated code that represents execution of a block. Other supporting data, such as
definitions for sample time and data types might remain in the generated code.

Dead Code Elimination

Any blocks or signals in an unused code path are eliminated from generated code.

1 Configuration Parameters Dialog Box

1-124

• The following conditions need to be met for a block to be considered part of an unused
code path:

• All signal paths for the block end with a block that does not execute. Examples of
blocks that do not execute include Terminator blocks, disabled Assertion blocks,
S-Function blocks configured for block reduction, and To Workspace blocks when
MAT-file logging is disabled for code generation.

• No signal paths for the block include global signal storage downstream from the
block.

• Tunable parameters do not prevent a block from being reduced by dead code
elimination.

• Consider the signal paths in the following block diagram.

If you check Block reduction, Simulink Coder software responds to each signal path
as follows:

For Signal Path... Simulink Coder Software...

In1 to Out1 Generates code because dead code elimination conditions are
not met.

In2 to Terminator Does not generate code because dead code elimination
conditions are met.

 Optimization Pane: General

1-125

For Signal Path... Simulink Coder Software...

In3 to Scope Generates code if MAT-file logging is enabled and eliminates
code if MAT-file logging is disabled.

Command-Line Information
Parameter: BlockReduction
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off for simulation or during development
No impact for production code generation

Traceability Off
Efficiency On
Safety precaution Off

See Also

• “Time-Based Scheduling”
• “Optimization Pane: General” on page 1-120
• “Remove Code for Blocks That Have No Effect on Computational Results”
• “Eliminate Dead Code Paths in Generated Code”
• For code generation, see “Performance”

1 Configuration Parameters Dialog Box

1-126

Conditional input branch execution

Improve model execution when the model contains Switch and Multiport Switch blocks.

Settings

Default: On

 On
Executes only the blocks required to compute the control input and the data input
selected by the control input. This optimization speeds execution of code generated
from the model. Limits to Switch block optimization:

• Only blocks with -1 (inherited) or inf (Constant) sample time can participate.
• Blocks with outputs flagged as test points cannot participate.
• No multirate block can participate.
• Blocks with states cannot participate.
• Only S-functions with option SS_OPTION_CAN_BE_CALLED_CONDITIONALLY set

can participate.

 Off
Executes all blocks driving the Switch block input ports at each time step.

Command-Line Information

Parameter: ConditionallyExecuteInputs
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability On
Efficiency On (execution), No impact (ROM, RAM)
Safety precaution No impact

 Optimization Pane: General

1-127

See Also

• “Minimize Computations and Storage for Intermediate Results”
• “Use Conditional Input Branch Execution”
• “Conditional Execution Behavior”
• “Optimization Pane: General” on page 1-120
• For code generation, see “Performance”

1 Configuration Parameters Dialog Box

1-128

 Optimization Pane: General

1-129

Implement logic signals as Boolean data (vs. double)

Controls the output data type of blocks that generate logic signals.

Settings

Default: On

 On
Blocks that generate logic signals output a signal of boolean data type. This reduces
the memory requirements of generated code.

 Off
Blocks that generate logic signals output a signal of double data type. This ensures
compatibility with models created by earlier versions of Simulink software.

Tips

• Setting this option on reduces the memory requirements of generated code, because
a Boolean signal typically requires one byte of storage compared to eight bytes for a
double signal.

• Setting this option off allows the current version of Simulink software to run models
that were created by earlier versions of Simulink software that supported only signals
of type double.

• This optimization affects the following blocks:

• Logical Operator block – This parameter affects only those Logical
Operator blocks whose Output data type parameter specifies Inherit:
Logical (see Configuration Parameters: Optimization). If this
parameter is selected, such blocks output a signal of boolean data type;
otherwise, such blocks output a signal of double data type.

• Relational Operator block – This parameter affects only those Relational
Operator blocks whose Output data type parameter specifies Inherit:
Logical (see Configuration Parameters: Optimization). If this
parameter is selected, such blocks output a signal of boolean data type;
otherwise, such blocks output a signal of double data type.

• Combinatorial Logic block – If this parameter is selected, Combinatorial
Logic blocks output a signal of boolean data type; otherwise, they output

1 Configuration Parameters Dialog Box

1-130

a signal of double data type. See Combinatorial Logic in the Simulink
Reference for an exception to this rule.

• Hit Crossing block – If this parameter is selected, Hit Crossing blocks output
a signal of boolean data type; otherwise, they output a signal of double data
type.

Dependencies

• This parameter is disabled for models created with a version of Simulink software
that supports only signals of type double.

Command-Line Information

Parameter: BooleanDataType
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On
Safety precaution On

See Also

• “Optimization Pane: General” on page 1-120

• For code generation, see “Optimize Generated Code Using Boolean Data for Logical
Signals”

 Optimization Pane: General

1-131

Application lifespan (days)

Specify how long (in days) an application that contains blocks depending on elapsed or
absolute time should be able to execute before timer overflow.

Settings

Default: inf
Min: Must be greater than zero
Max: inf

Enter a positive (nonzero) scalar value (for example, 0.5) or inf.

If you are licensed for the Embedded Coder product and select an ERT target for your
model, the default value for Application lifespan (days) is 1.

This parameter is ignored when you are operating your model in external mode, have
Mat-file logging enabled, or have a continuous sample time because a 64 bit timer is
required in these cases.

Tips

• Specifying a lifespan, along with the simulation step size, determines the data type
used by blocks to store absolute time values.

• For simulation, setting this parameter to a value greater than the simulation time
will ensure time does not overflow.

• Simulink software evaluates this parameter first against the model workspace. If this
does not resolve the parameter, Simulink software then evaluates it against the base
workspace.

• The Application lifespan also determines the word size used by timers in the
generated code, which can lower RAM usage. For more information, see Timing
Services in the Simulink Coder documentation.

• Application lifespan, when combined with the step size of each task, determines the
data type used for integer absolute time for each task, as follows:

• If your model does not require absolute time, this option affects neither simulation
nor the generated code.

• If your model requires absolute time, this option optimizes the word size used for
storing integer absolute time in generated code. This ensures that timers do not

1 Configuration Parameters Dialog Box

1-132

overflow within the lifespan you specify. If you set Application lifespan to inf,
two uint32 words are used.

• If your model contains fixed-point blocks that require absolute time, this option
affects both simulation and generated code.

For example, using 64 bits to store timing data enables models with a step size of
0.001 microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001 seconds)
for one day would require a 32-bit timer (but it could continue running for 49 days).

• A timer will allocate 64 bits of memory if you specify a value of inf.
• To minimize the amount of RAM used by time counters, specify a lifespan no longer

than necessary.
• Must be the same for top and referenced models.
• Optimize the size of counters used to compute absolute and elapsed time.

Command-Line Information

Parameter: LifeSpan
Type: string
Value: positive (nonzero) scalar value or inf
Default: 'inf'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Finite value
Safety precaution inf

See Also

• “Time-Based Scheduling and Code Generation”
• “ Use Timers in Asynchronous Tasks”
• “Optimization Pane: General” on page 1-120
• “Timers/Counters for Absolute and Elapsed Time”
• For code generation, see “Performance”

 Optimization Pane: General

1-133

1 Configuration Parameters Dialog Box

1-134

Use division for fixed-point net slope computation

The Fixed-Point Designer™ software performs net slope computation using division to
handle net slopes when simplicity and accuracy conditions are met.

Settings

Default: Off

Off

Performs net slope computation using integer multiplication followed by shifts.
On

Performs net slope computation using a rational approximation of the net slope. This
results in an integer multiplication and/or division when simplicity and accuracy
conditions are met.

Use division for reciprocals of integers only

Performs net slope computation using division when the net slope can be represented
by the reciprocal of an integer and simplicity and accuracy conditions are met.

Tips

• This optimization affects both simulation and code generation.
• When a change of fixed-point slope is not a power of two, net slope computation is

necessary. Normally, net slope computation uses an integer multiplication followed by
shifts. Enabling this new optimization replaces the multiplication and shifts with an
integer division or an integer multiplication and division under certain simplicity and
accuracy conditions.

• Performing net slope computation using division is not always more efficient than
using multiplication followed by shifts. Ensure that the target hardware supports
efficient division.

• To ensure that this optimization occurs:

• Set the word length of the block so that the software can perform division using
the long data type of the target hardware. That setting avoids use of multiword
operations.

• Set the Signed integer division rounds to configuration parameter on the
Hardware Implementation pane to Zero or Floor. The optimization does not
occur if you set this parameter to Undefined.

 Optimization Pane: General

1-135

• Set the Integer rounding mode parameter of the block to Simplest or to the
value of the Signed integer division rounds to configuration parameter setting
on the Hardware Implementation pane.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter: UseDivisionForNetSlopeComputation
Type: string
Value: 'off' | 'on' | 'UseDivisionForReciprocalsOfIntegersOnly'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On (when target hardware supports efficient

division)
Off (otherwise)

Safety precaution No impact

See Also

• Use Integer Division for Net Slope Correction
• “Optimization Pane: General” on page 1-120

1 Configuration Parameters Dialog Box

1-136

Use floating-point multiplication to handle net slope corrections

The Fixed-Point Designer software uses floating-point multiplication to perform net slope
correction for floating-point to fixed-point casts.

Settings

Default: Off

 On
Use floating-point multiplication to perform net slope correction for floating-point to
fixed-point casts.

 Off
Use division to perform net slope correction for floating-point to fixed-point casts.

Tips

• This optimization affects both simulation and code generation.
• When converting from floating point to fixed point, if the net slope is not a power of

two, slope correction using division improves precision. For some processors, use of
multiplication improves code efficiency.

Dependencies

• This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter: UseFloatMulNetSlope
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

 Optimization Pane: General

1-137

Application Setting

Efficiency On (when target hardware supports efficient
multiplication)
Off (otherwise)

Safety precaution Off

See Also

• “Optimization Pane: General” on page 1-120
• “Floating-Point Multiplication to Handle a Net Slope Correction”

1 Configuration Parameters Dialog Box

1-138

Default for underspecified data type

Specify the default data type to use for inherited data types if Simulink software could
not infer the data type of a signal during data type propagation.

Settings

Default: double

double

Sets the data type for underspecified data types during data type propagation to
double. Simulink uses double as the data type for inherited data types.

single

Sets the data type for underspecified data types during data type propagation to
single. Simulink uses single as the data type for inherited data types.

Tips

• This setting affects both simulation and code generation.
• For embedded designs that target single-precision processors, set this parameter to

single to avoid the introduction of double data types.
• Use the Model Advisor Identify questionable operations for strict single-precision

design check to identify the double-precision usage in your model.

Command-Line Information
Parameter: DefaultUnderspecifiedDataType
Type: string
Value: 'double' | 'single'
Default: 'double'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency single (when target hardware supports efficient

single computations)
double (otherwise)

 Optimization Pane: General

1-139

Application Setting

Safety precaution No impact

See Also

• “Underspecified data types” on page 1-254
• “Identify questionable operations for strict single-precision design”
• “Validate a Single-Precision Model”
• “Use single Data Type as Default for Underspecified Types”

1 Configuration Parameters Dialog Box

1-140

Optimize using the specified minimum and maximum values

Optimize generated code using the specified minimum and maximum values for signals
and parameters in the model.

Settings

Default: Off

 On
Optimizes the generated code using range information derived from the minimum
and maximum specified values for signals and parameters in the model.

 Off
Ignores specified minimum and maximum values when generating code.

Tips

• Before generating code, test the specified values by simulating your model with
simulation range checking enabled using the Diagnostics > Data Validity >
Simulation range checking configuration parameter. If errors or warnings occur,
fix these issues before generating code. Otherwise, optimization might result in
numerical mismatch with simulation.

• Specify minimum and maximum values for signals and parameters in the model for:

• Inport and Outport blocks.
• Block outputs.
• Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks.
• Simulink.Signal objects.

• This optimization does not take into account minimum and maximum values specified
for:

• Merge block inputs. To work around this, use a Simulink.Signal object on the
Merge block output and specify the range on this object

• Bus elements.
• Conditionally-executed subsystem (such as a triggered subsystem) block outputs

that are directly connected to an Outport block.

 Optimization Pane: General

1-141

Outport blocks in conditionally-executed subsystems can have an initial
value specified for use only when the system is not triggered. In this case, the
optimization cannot use the range of the block output because the range might not
cover the initial value of the block.

• If you use the Polyspace® Code Prover™software to verify code generated using
this optimization, it might mark code that was previously green as orange. For
example, if your model contains a division where the range of the denominator does
not include zero, the generated code does not include protection against division by
zero. Polyspace Code Prover might mark this code orange because it does not have
information about the minimum and maximum values specified for the inputs to the
division.

The Polyspace Code Prover software does automatically capture some minimum
and maximum values specified in the MATLAB workspace, for example, for
Simulink.Signal and Simulink.Parameter objects. In this example, to provide
range information to the Polyspace Code Prover software, use a Simulink.Signal
object on the input of the division and specify a range that does not include zero.

The Polyspace Code Prover software stores these values in a Data Range Specification
(DRS) file. However, they do not capture all minimum and maximum values specified
in your Simulink model. To provide additional min/max information to Polyspace
Code Prover, you can manually define a DRS file. For more information, see the
Polyspace Code Prover documentation.

• If you are using double-precision data types and the Code Generation > Interface
> Support non-finite numbers configuration parameter is selected, this
optimization does not occur.

• If your model contains multiple instances of a reusable subsystem and each instance
uses input signals with different specified minimum and maximum values, this
optimization might result in different generated code for each subsystem so code
reuse does not occur. Without this optimization, the Simulink Coder software
generates code once for the subsystem and shares this code among the multiple
instances of the subsystem.

• The Model Advisor Check safety-related optimization settings check generates
a warning if this option is selected. For many safety critical applications, it is
not acceptable to remove dead code automatically because this might result in
requirements without traceable code. For more information, see Check safety-related
optimization settings.

1 Configuration Parameters Dialog Box

1-142

• Enabling this optimization improves the ability of the Fixed-Point Designer software
to eliminate unnecessary utility functions and saturation code from the generated
code.

Dependencies

• This parameter appears for ERT-based targets only.
• This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: UseSpecifiedMinMax
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On
Safety precaution Off

See Also

• “Optimize Generated Code Using Minimum and Maximum Values”
• “Optimize Generated Code Using Specified Minimum and Maximum Values” in the

Fixed-Point Designer documentation.

 Optimization Pane: General

1-143

Remove root level I/O zero initialization

Specify whether to generate initialization code for root-level inports and outports set to
zero.

Settings

Default: Off (GUI), 'on' (command-line)

 On
Does not generate initialization code for root-level inports and outports set to zero.

 Off
Generates initialization code for all root-level inports and outports. Use the default:

• To initialize memory allocated for C MEX S-function wrappers to zero.
• To initialize all internal and external data to zero.

Note: Generated code never initializes data of ImportedExtern or
ImportedExternPointer storage classes, regardless of configuration parameter
settings.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: ZeroExternalMemoryAtStartup
Type: string
Value: 'off' | 'on'
Default: 'on'

Note: The command-line values are reverse of the settings values. Therefore, 'on' in the
command line corresponds to the description of “Off” in the settings section, and 'off'
in the command line corresponds to the description of “On” in the settings section.

1 Configuration Parameters Dialog Box

1-144

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On (GUI), off (command line) (execution, ROM),

No impact (RAM)
Safety precaution Off (GUI), on (command line)

See Also

• “Remove Initialization Code for Root-Level Inports and Outports Set to Zero”
• “Optimization Pane: General” on page 1-120
• For code generation, see “Performance”

 Optimization Pane: General

1-145

Use memset to initialize floats and doubles to 0.0

Specify whether to generate code that explicitly initializes floating-point data to 0.0.

Settings

Default: On (GUI), 'off' (command-line)

 On
Uses memset to clear internal storage for floating-point data to integer bit pattern
0 (all bits 0), regardless of type. If your compiler and target CPU both represent
floating-point zero with the integer bit pattern 0, consider setting this parameter to
gain execution and ROM efficiency.

 Off
Generates code to explicitly initialize storage for data of types float and double to
0.0. The resulting code is slightly less efficient than code generated when you select
the option.

You should not select this option if you need to ensure that memory allocated for C
MEX S-function wrappers is initialized to zero.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information
Parameter: InitFltsAndDblsToZero
Type: string
Value: 'on' | 'off'
Default: 'off'

Note: The command-line values are reverse of the settings values. Therefore, 'on' in the
command line corresponds to the description of “Off” in the settings section, and 'off'
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-146

Application Setting

Traceability No impact
Efficiency On (GUI), 'off' (command-line) (execution,

ROM), No impact (RAM)
Safety precaution No impact

See Also

• “Optimization Pane: General” on page 1-120
• For code generation, see “Optimize Generated Code Using memset Function”

 Optimization Pane: General

1-147

Remove internal data zero initialization

Specify whether to generate initialization code for internal work structures, such as block
states and block outputs, to zero.

Settings

Default: Off (GUI), 'on' (command-line)

 On
Does not generate code that initializes internal work structures to zero. An example
of when you might select this parameter is to test the behavior of a design during
warm boot—a restart without full system reinitialization.

Selecting this parameter does not guarantee that memory is in a known state each
time the generated code begins execution. When you run a model or generated S-
function multiple times, each run can produce a different answer, even when calling
the model initialization function in an attempt to reset memory.

If want to get the same answer on every run from a generated S-function, enter the
command clear SFcnNam or clear mex in the MATLAB Command Window before
each run.

 Off
Generates code that initializes internal work structures to zero. You should use the
default:

• To ensure that memory allocated for C MEX S-function wrappers is initialized to
zero

• For safety critical applications that require that all internal and external data be
initialized to zero

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: ZeroInternalMemoryAtStartup
Type: string

1 Configuration Parameters Dialog Box

1-148

Value: 'off' | 'on'
Default: 'on'

Note: The command-line values are reverse of the settings values. Therefore, 'on' in the
command line corresponds to the description of “Off” in the settings section, and 'off'
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On (GUI), off (command line), (execution, ROM),

No impact (RAM)
Safety precaution Off (GUI), on (command line)

See Also

• “Optimization Pane: General” on page 1-120
• “Eliminate Zero Initialization Code for Internal Data”
• For code generation, see “Performance”

 Optimization Pane: General

1-149

Optimize initialization code for model reference

Specify whether to generate initialization code for blocks that have states.

Settings

Default: on

 On
Suppresses generation of initialization code for blocks that have states unless the
blocks are in a system that can reset its states, such as an enabled subsystem. This
results in more efficient code.

 Off
Generates initialization code for all blocks that have states. Disable this option if the
current model includes a subsystem that resets states, such as an enabled subsystem,
and the model is referred to from another model with a Model block.

Tips

The following restrictions apply to using the Optimize initialization code for model
reference parameter. However, these restrictions do not apply to a Model block that
references a function-call model.

• In a subsystem that resets states, do not include a Model block that references a
model that has this parameter set to on. For example, in an enabled subsystem with
the States when enabling block parameter set to reset, do not include a Model
block that references a model that has the Optimize initialization code for model
reference parameter set to on.

• If you set the Optimize initialization code for model reference parameter to off
in a model that includes a Model block that directly references a model, do not set the
Optimize initialization code for model reference parameter for the referenced
model to on.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires a Embedded Coder license when generating code.

1 Configuration Parameters Dialog Box

1-150

Command-Line Information
Parameter: OptimizeModelRefInitCode
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On (execution, ROM), No impact (RAM)
Safety precaution No impact

See Also

• “Optimize Initialization Code for a Referenced Model”
• “Optimization Pane: General” on page 1-120
• For code generation, see “Performance”

 Optimization Pane: General

1-151

Remove code from floating-point to integer conversions that wraps out-
of-range values

Remove wrapping code that handles out-of-range floating-point to integer conversion
results.

Settings

Default: Off

 On
Removes code when out-of-range conversions occur. Select this check box if code
efficiency is critical to your application and the following conditions are true for at
least one block in the model:

• Computing the outputs or parameters of a block involves converting floating-point
data to integer or fixed-point data.

• The Saturate on integer overflow check box is cleared in the Block Parameters
dialog box.

Caution Execution of generated code might not produce the same results as
simulation.

 Off
Results for simulation and execution of generated code match when out-of-range
conversions occur. The generated code is larger than when you select this check box.

Tips

• Selecting this check box reduces the size and increases the speed of the generated
code at the cost of potentially producing results that do not match simulation in the
case of out-of-range values.

• Selecting this check box affects code generation results only for out-of-range values
and cannot cause code generation results to differ from simulation results for in-range
values.

Dependency

This parameter requires a Simulink Coder license.

1 Configuration Parameters Dialog Box

1-152

Command-Line Information

Parameter: EfficientFloat2IntCast
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On (execution, ROM), No impact (RAM)
Safety precaution Off for simulation or during development

On for production code generation

See Also

• “Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-Range
Values”

• “Optimization Pane: General” on page 1-120

 Optimization Pane: General

1-153

Remove code from floating-point to integer conversions with saturation
that maps NaN to zero

Remove code that handles floating-point to integer conversion results for NaN values.

Settings

Default: On

 On
Removes code when mapping from NaN to integer zero occurs. Select this check box if
code efficiency is critical to your application and the following conditions are true for
at least one block in the model:

• Computing outputs or parameters of a block involves converting floating-point
data to integer or fixed-point data.

• The Saturate on integer overflow check box is selected in the Block
Parameters dialog box.

Caution Execution of generated code might not produce the same results as
simulation.

 Off
Results for simulation and execution of generated code match when mapping from
NaN to integer zero occurs. The generated code is larger than when you select this
check box.

Tips

• Selecting this check box reduces the size and increases the speed of the generated
code at the cost of producing results that do not match simulation in the case of NaN
values.

• Selecting this check box affects code generation results only for NaN values and cannot
cause code generation results to differ from simulation results for any other values.

Dependencies

• This parameter requires a Simulink Coder license.

1 Configuration Parameters Dialog Box

1-154

• For ERT-based targets, this parameter is enabled when you select the floating-
point numbers and non-finite numbers check boxes in the Code Generation >
Interface pane.

Command-Line Information

Parameter: EfficientMapNaN2IntZero
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On
Safety precaution Off for simulation or during development

On for production code generation

See Also

• “Remove Code That Maps NaN to Integer Zero”
• “Optimization Pane: General” on page 1-120

 Optimization Pane: General

1-155

Remove code that protects against division arithmetic exceptions

Specify whether to generate code that guards against division by zero for fixed-point
data.

Settings

Default: On

 On
Does not generate code that guards against division by zero for fixed-point data.
When you select this option, simulation results and results from generated code
might not be in bit-for-bit agreement.

 Off
Generates code that guards against division by zero for fixed-point data.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: NoFixptDivByZeroProtection
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On
Safety precaution Off

See Also

• “Remove Code That Guards Against Division by Zero for Fixed-Point Data”

1 Configuration Parameters Dialog Box

1-156

• “Optimization Pane: General” on page 1-120
• For code generation, see “Performance”

 Optimization Pane: General

1-157

Compiler optimization level

Sets the degree of optimization used by the compiler when generating code for
acceleration.

Settings

Default: Optimizations off (faster builds)

Optimizations off (faster builds)

Specifies the compiler not to optimize code. This results in faster build times.
Optimizations on (faster runs)

Specifies the compiler to generate optimized code. The generated code will run faster,
but the model build will take longer than if optimizations are off.

Tips

• The default Optimizations off is a good choice for most models. This quickly
produces code that can be used with acceleration.

• Set Optimizations on to optimize your code. The fast running code produced by
optimization can be advantageous if you will repeatedly run your model with the
accelerator.

Command-Line Information
Parameter: SimCompilerOptimization
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Acceleration”

1 Configuration Parameters Dialog Box

1-158

• “Interact with the Acceleration Modes Programmatically”
• “Customize the Acceleration Build Process”

 Optimization Pane: General

1-159

Verbose accelerator builds

Select the amount of information displayed during code generation for Simulink
Accelerator mode, referenced model Accelerator mode, and Rapid Accelerator mode.

Settings

Default: Off

 Off
Display limited amount of information during the code generation process.

 On
Display progress information during code generation, and show the compiler options
in use.

Command-Line Information
Parameter: AccelVerboseBuild
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

For more information about AccelVerboseBuild, see “Controlling Verbosity During
Code Generation”.

1 Configuration Parameters Dialog Box

1-160

Optimization Pane: Signals and Parameters

The Optimization > Signals and Parameters pane includes the following parameters
when you select a GRT-based system target file:

The Optimization > Signals and Parameters pane includes the following parameters
when you select an ERT-based system target file:

In this section...

“Optimization Pane: Signals and Parameters Tab Overview” on page 1-162

 Optimization Pane: Signals and Parameters

1-161

In this section...

“Default parameter behavior” on page 1-162
“Signal storage reuse” on page 1-165
“Enable local block outputs” on page 1-167
“Reuse local block outputs” on page 1-169
“Eliminate superfluous local variables (Expression folding)” on page 1-171
“Reuse global block outputs” on page 1-174
“Minimize data copies between local and global variables” on page 1-175
“Inline invariant signals” on page 1-177
“Optimize global data access” on page 1-179
“Simplify array indexing” on page 1-181
“Use memcpy for vector assignment” on page 1-183
“Memcpy threshold (bytes)” on page 1-185
“Pack Boolean data into bitfields” on page 1-186
“Bitfield declarator type specifier” on page 1-188
“Loop unrolling threshold” on page 1-190
“Maximum stack size (bytes)” on page 1-191
“Pass reusable subsystem outputs as” on page 1-193
“Parameter structure” on page 1-195
“Model Parameter Configuration Dialog Box” on page 1-197

1 Configuration Parameters Dialog Box

1-162

Optimization Pane: Signals and Parameters Tab Overview

Set up optimizations for a model's active configuration set.

Tips

• To open the Optimization: Signals and Parameters pane, in the Simulink Editor,
select Simulation > Model Configuration Parameters > Optimization >
Signals and Parameters.

• Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system. Selecting a GRT-based or ERT-based system target file
changes the available options. ERT-based target optimizations require a Embedded
Coder license when generating code. See the Dependencies sections below for
licensing information for each parameter.

See Also

• “Optimization Pane: Signals and Parameters” on page 1-160
• For code generation, see “Performance”

Default parameter behavior

Transform numeric block parameters into constant inlined values in the generated code.

Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined

Set Default parameter behavior to Inlined to reduce global RAM usage and
increase efficiency of the generated code. The code does not allocate memory to
represent numeric block parameters such as the Gain parameter of a Gain block.
Instead, the code inlines the literal numeric values of these block parameters.

Tunable

Set Default parameter behavior to Tunable to enable tunability of numeric block
parameters in the generated code. The code represents numeric block parameters
and variables that use the storage class Auto, including numeric MATLAB variables,
as tunable fields of a global parameters structure.

 Optimization Pane: Signals and Parameters

1-163

Tips

• Whether you set Default parameter behavior to Inlined or to Tunable, create
parameter data objects to preserve tunability for block parameters. For more
information, see “Control Parameter Representation and Declare Tunable Parameters
in the Generated Code”.

• When you switch from a system target file that is not ERT-based to one that is ERT-
based, Default parameter behavior sets to Inlined by default. However, you can
change the setting of Default parameter behavior later.

• When a top model uses referenced models or if a model is referenced by another
model:

• All referenced models must set Default parameter behavior to Inlined if the
top model has Default parameter behavior set to Inlined.

• The top model can specify Default parameter behavior as Tunable or
Inlined.

• If your model contains an Environment Controller block, you can suppress code
generation for the branch connected to the Sim port if you set Default parameter
behavior to Inlined and the branch does not contain external signals.

Dependencies

When you set Default parameter behavior to Inlined, you enable these configuration
parameters:

• “Parameter structure” on page 1-195
• “Inline invariant signals” on page 1-177

Command-Line Information

Parameter: DefaultParameterBehavior
Type: string
Value: 'Inlined' | 'Tunable'
Default: 'Tunable' for GRT targets | 'Inlined' for ERT targets

Recommended Settings

Application Setting

Debugging Tunable during development
Inlined for production code generation

1 Configuration Parameters Dialog Box

1-164

Application Setting

Traceability Inlined

Efficiency Inlined

Safety precaution No impact

See Also

• “Inline Block Parameter Values”
• “Control Parameter Representation and Declare Tunable Parameters in the

Generated Code”
• Parameter Storage, Interfacing, and Tuning
• Optimization Pane
• “Inline Block Parameters and Propagate Constant Values”

 Optimization Pane: Signals and Parameters

1-165

Signal storage reuse

Reuse signal memory.

Settings

Default: On

 On
Simulink software reuses memory buffers allocated to store block input and output
signals, reducing the memory requirement of your real-time program.

 Off
Simulink software allocates a separate memory buffer for each block's outputs.
This makes all block outputs global and unique, which in many cases significantly
increases RAM and ROM usage.

Tips

• This option applies only to signals with storage class Auto.
• Signal storage reuse can occur only among signals that have the same data type.
• Clearing this option can substantially increase the amount of memory required to

simulate large models.
• Clear this option if you need to:

• Debug a C-MEX S-function
• Use a Floating Scope or a Display block with the Floating display option selected

to inspect signals in a model that you are debugging
• Simulink software opens an error dialog if Signal storage reuse is enabled and you

attempt to use a Floating Scope or floating Display block to display a signal whose
buffer has been reused.

Dependencies

This parameter enables:

• “Enable local block outputs” on page 1-167
• “Reuse local block outputs” on page 1-169
• “Eliminate superfluous local variables (Expression folding)” on page 1-171

1 Configuration Parameters Dialog Box

1-166

• “Minimize data copies between local and global variables” on page 1-175 if
you have a Simulink Coder license.

“Optimize global data access” on page 1-179 if you have an Embedded Coder
license.

Command-Line Information

Parameter:OptimizeBlockIOStorage
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On
Safety precaution No impact

See Also

• “Optimize Buffers in the Generated Code”
• Signal Storage, Optimization, and Interfacing
• Optimizing a Model for Code Generation
• “Vector Operation Optimization”
• Optimization Pane

 Optimization Pane: Signals and Parameters

1-167

Enable local block outputs

Specify whether block signals are declared locally or globally.

Settings

Default: On

 On
Block signals are declared locally in functions.

 Off
Block signals are declared globally.

Tips

• If it is not possible to declare an output as a local variable, the generated code
declares the output as a global variable.

• If you are constrained by limited stack space, you can turn Enable local block
outputs off and still benefit from memory reuse.

Dependencies

• This parameter requires a Simulink Coder license.
• This parameter is enabled by Signal storage reuse.

Command-Line Information

Parameter: LocalBlockOutputs
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On

1 Configuration Parameters Dialog Box

1-168

Application Setting

Safety precaution No impact

See Also

• Signal Storage, Optimization, and Interfacing
• Signals with Auto Storage Class
• “Enable and Reuse Local Block Outputs in Generated Code”
• Optimizing a Model for Code Generation
• Optimization Pane

 Optimization Pane: Signals and Parameters

1-169

Reuse local block outputs

Specify whether Simulink Coder software reuses signal memory.

Settings

Default: On

 On

• Simulink Coder software reuses signal memory whenever possible, reducing stack
size where signals are being buffered in local variables.

• Selecting this parameter trades code traceability for code efficiency.

 Off
Signals are stored in unique locations.

Dependencies

This parameter:

• Is enabled by Signal storage reuse.
• Requires a Simulink Coder license.

Command-Line Information

Parameter: BufferReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On
Safety precaution No impact

1 Configuration Parameters Dialog Box

1-170

See Also

• Signal Storage, Optimization, and Interfacing
• Signals with Auto Storage Class
• “Enable and Reuse Local Block Outputs in Generated Code”
• Optimizing a Model for Code Generation
• Optimization Pane

 Optimization Pane: Signals and Parameters

1-171

Eliminate superfluous local variables (Expression folding)

1 Configuration Parameters Dialog Box

1-172

Collapse block computations into single expressions.

Settings

Default: On

 On

• Enables expression folding.
• Eliminates local variables, incorporating the information into the main code

statement.
• Improves code readability and efficiency.

 Off
Disables expression folding.

Dependencies

• This parameter requires a Simulink Coder license.
• This parameter is enabled by Signal storage reuse.

Command-Line Information

Parameter: ExpressionFolding
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off
Traceability No impact for simulation or during development

Off for production code generation
Efficiency On
Safety precaution No impact

See Also

• “Minimize Computations and Storage for Intermediate Results”

 Optimization Pane: Signals and Parameters

1-173

• Expression Folding
• Optimizing a Model for Code Generation
• Optimization Pane

1 Configuration Parameters Dialog Box

1-174

Reuse global block outputs

Reuse global memory for block outputs.

Settings

Default: On

 On

• Software reuses signal memory whenever possible, reducing global variable use.
• Selecting this parameter trades code traceability for code efficiency.

 Off
Signals are stored in unique locations.

Dependencies

This parameter:

• Is enabled by “Signal storage reuse” on page 1-165.
• Requires an Embedded Coder license.
• Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalBufferReuse
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On (execution, ROM, RAM)
Safety precaution No impact

 Optimization Pane: Signals and Parameters

1-175

See Also

• “Reuse Block Outputs in the Generated Code”
• Signal Storage, Optimization, and Interfacing
• Signals with Auto Storage Class
• Optimizing a Model for Code Generation
• Optimization Pane

Minimize data copies between local and global variables

1 Configuration Parameters Dialog Box

1-176

Reuse existing global variables to store temporary results.

Settings

Default: Off

 On
Writes data for block outputs to global variables, reducing RAM consumption and
execution time.

 Off
Writes data for block outputs to local variables.

Dependencies

• This parameter requires a Simulink Coder license.
• This parameter is enabled by “Signal storage reuse” on page 1-165.
• With an Embedded Coder license, if you select an embedded target such as ert.tlc,

the software replaces Minimize data copies between local and global variables
check box with the Optimize global data access list. When Minimize data copies
between local and global variables is selected, Optimize global data access is
set to Use global to hold temporary results.

Command-Line Information
Parameter: EnhancedBackFolding
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On (execution, ROM, RAM)
Safety precaution No impact

See Also

• “Signal Representation in Generated Code”

 Optimization Pane: Signals and Parameters

1-177

• Optimization Pane
• For code generation, see “Performance”

Inline invariant signals

1 Configuration Parameters Dialog Box

1-178

Transform symbolic names of invariant signals into constant values.

Settings

Default: Off

 On
Simulink Coder software uses the numerical values of model parameters, instead
of their symbolic names, in generated code. An invariant signal is not inline if it is
nonscalar, complex, or the block inport the signal is attached to takes the address of
the signal.

 Off
Uses symbolic names of model parameters in generated code.

Dependencies

• This parameter requires a Simulink Coder license.
• This parameter is enabled when you set Default parameter behavior to Inlined.

Command-Line Information

Parameter: InlineInvariantSignals
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency On
Safety precaution No impact

See Also

“Inline Invariant Signals”

 Optimization Pane: Signals and Parameters

1-179

Optimize global data access

Select global variable optimization.

Settings

Default: None

None

Use default optimizations.
Use global to hold temporary results

Maximize use of global variables.
Minimize global data access

Minimize use of global variables by using local variables to hold intermediate values.

Dependencies

• This parameter is enabled by “Signal storage reuse” on page 1-165.
• This parameter requires an Embedded Coder license.
• Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalVariableUsage
Type: string
Value: 'None' | 'Use global to hold temporary results' | 'Minimize
global data access'

Default: 'None'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency 'Use global to hold temporary results'

(RAM), 'Minimize global data access'
(ROM)

Safety precaution No impact

1 Configuration Parameters Dialog Box

1-180

See Also

• “Optimize Global Variable Usage”
• “Signal Representation in Generated Code”
• Optimization Pane
• For code generation, see “Performance”

 Optimization Pane: Signals and Parameters

1-181

Simplify array indexing

Replace multiply operations in array indices when accessing arrays in a loop.

Settings

Default: Off

 On
In array indices, replace multiply operations with add operations when accessing
arrays in a loop in the generated code. When the original signal is multidimensional,
the Embedded Coder generates one-dimensional arrays, resulting in multiply
operations in the array indices. Using this setting eliminates costly multiply
operations when accessing arrays in a loop in the C/C++ program. This optimization
(commonly referred to as strength reduction) is particularly useful if the C/C++
compiler on the target platform does not have similar functionality. No appearance
of multiply operations in the C/C++ program does not imply that the C/C++ compiler
does not generate multiply instructions.

 Off
Leave multiply operations in array indices when accessing arrays in a loop.

Dependencies

This parameter:

• Requires a Embedded Coder license to generate code.
• Appears only for ERT-based targets.

Command-Line Information
Parameter: StrengthReduction
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-182

Application Setting

Efficiency No impact
Safety precaution No impact

See Also

• “Simplify Multiply Operations In Array Indexing”
• Optimization Pane

 Optimization Pane: Signals and Parameters

1-183

Use memcpy for vector assignment

Optimize code generated for vector assignment by replacing for loops with memcpy.

Settings

Default: On

 On
Enables use of memcpy for vector assignment based on the associated threshold
parameter Memcpy threshold (bytes). memcpy is used in the generated code if the
number of array elements times the number of bytes per element is greater than or
equal to the specified value for Memcpy threshold (bytes). One byte equals the
width of a character in this context.

 Off
Disables use of memcpy for vector assignment.

Dependencies

• This parameter requires a Simulink Coder license.
• When selected, this parameter enables the associated parameter Memcpy threshold

(bytes).

Command-Line Information

Parameter: EnableMemcpy
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency On
Safety precaution No impact

1 Configuration Parameters Dialog Box

1-184

See Also

• “Optimize Code Generated for Vector Assignments”
• Optimizing a Model for Code Generation
• Optimization Pane

 Optimization Pane: Signals and Parameters

1-185

Memcpy threshold (bytes)

Specify the minimum array size in bytes for which memcpy function calls should replace
for loops in the generated code for vector assignments.

Settings

Default: 64

Specify the array size, in bytes, at which the code generator begins to use memcpy instead
of for loops for vector assignments.

Dependencies

• This parameter requires a Simulink Coder license.
• This parameter is enabled when you select Use memcpy for vector assignment.

Command-Line Information

Parameter: MemcpyThreshold
Type: integer
Value: any valid quantity of bytes
Default: 64

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Accept default or determine target-specific optimal

value
Safety precaution No impact

See Also

• “Optimize Code Generated for Vector Assignments”
• Optimizing a Model for Code Generation
• Optimization Pane

1 Configuration Parameters Dialog Box

1-186

Pack Boolean data into bitfields

Specify whether Boolean signals are stored as one–bit bitfields or as a Boolean data type.

Note: You cannot use this optimization when you generate code for a target that specifies
an explicit structure alignment.

Settings

Default: Off

 On
Stores Boolean signals into one–bit bitfields in global block I/O structures or DWork
vectors. This will reduce RAM, but might cause more executable code.

 Off
Stores Boolean signals as a Boolean data type in global block I/O structures or
DWork vectors.

Dependencies

This parameter:

• Requires a Embedded Coder license.
• Appears only for ERT-based targets.

Command-Line Information
Parameter: BooleansAsBitfields
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

 Optimization Pane: Signals and Parameters

1-187

Application Setting

Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact

See Also

• For code generation, see “Optimize Generated Code By Packing Boolean Data Into
Bitfields”

• “Optimization Pane: General” on page 1-120
• “Bitfield declarator type specifier” on page 1-188

1 Configuration Parameters Dialog Box

1-188

Bitfield declarator type specifier

Specify the bitfield type when selecting configuration parameter “Pack Boolean data into
bitfields” on page 1-186.

Note: The optimization benefit is dependent upon your choice of target.

Settings

Default: uint_T

 uint_T
The type specified for a bitfield declaration is an unsigned int.

 uchar_T
The type specified for a bitfield declaration is an unsigned char.

Tip

The “Pack Boolean data into bitfields” on page 1-186 configuration parameter default
setting uses unsigned integers. This might cause an increase in RAM if the bitfields are
small and distributed. In this case, uchar_T might use less RAM depending on your
target.

Dependency

Pack Boolean data into bitfields enables this parameter.

Command-Line Information
Parameter: BitfieldContainerType
Type: string
Value: uint_T | uchar_T
Default: uint_T

Recommended Settings

Application Setting

Debugging No impact

 Optimization Pane: Signals and Parameters

1-189

Application Setting

Traceability No impact
Efficiency Target dependent
Safety precaution No impact

See Also

“Pack Boolean data into bitfields” on page 1-186

1 Configuration Parameters Dialog Box

1-190

Loop unrolling threshold

Specify the minimum signal or parameter width for which a for loop is generated.

Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of
separate assignment statements to assign values to the elements of a signal or parameter
array.

When there are perfectly nested loops, the code generator uses a for loop if the product
of the loop counts for all loops in the perfect loop nest is greater than or equal to the
threshold.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: RollThreshold
Type: string
Value: any valid value
Default: '5'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency >0
Safety precaution >1

See Also

• Configuring a Loop Unrolling Threshold
• “Target Language Compiler”

 Optimization Pane: Signals and Parameters

1-191

Maximum stack size (bytes)

Specify the maximum stack size in bytes for your model.

Settings

Default:Inherit from target

Inherit from target

The Simulink Coder software assigns the maximum stack size to the smaller value of
the following:

• The default value (200,000 bytes) set by the Simulink Coder software
• Value of the TLC variable MaxStackSize in the system target file

<Specify a value>

Specify a positive integer value. Simulink Coder software assigns the maximum
stack size to the specified value.

Note: If you specify a maximum stack size for a model, the estimated required stack
size of a referenced model must be less than the specified maximum stack size of the
parent model.

Tips

• If you specify the maximum stack size to be zero, then the generated code implements
all variables as global data.

• If you specify the maximum stack to be inf, then the generated code contains the
least number of global variables.

Command-Line Information
Parameter: MaxStackSize
Type: int
Value: Any valid value
Default: Inherit from target

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-192

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Customize Stack Space Allocation” in the Simulink Coder documentation

 Optimization Pane: Signals and Parameters

1-193

Pass reusable subsystem outputs as

Specify how a reusable subsystem passes outputs.

Settings

Default: Structure reference

Structure reference

Passes reusable subsystem outputs as a pointer to a structure stored in global
memory.

Individual arguments

Passes each reusable subsystem output argument as an address of a local, instead
of as a pointer to an area of global memory containing all output arguments. This
option reduces global memory usage and eliminates copying local variables back to
global block I/O structures. When the signals are allocated as local variables, there
may be an increase in stack size. If the stack size increases beyond a level that you
want, use the default setting. The maximum number of output arguments passed
individually is 12.

Note: The default option is used for reusable subsystems that have signals with variable
dimensions.

Dependencies

This parameter:

• Requires a Embedded Coder license.
• Appears only for ERT-based targets.

Command-Line Information
Parameter: PassReuseOutputArgsAs
Type: string
Value: 'Structure reference' | 'Individual arguments'
Default: 'Structure reference'

1 Configuration Parameters Dialog Box

1-194

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Structure reference (ROM), Individual

arguments (execution, RAM)
Safety precaution No impact

See Also

• “Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual
Arguments”

• “Generate Reusable Code for Subsystems Shared Across Models”

 Optimization Pane: Signals and Parameters

1-195

Parameter structure

Control how parameter data is generated for reusable subsystems.

Settings

Default: Hierarchical

Hierarchical

Generates a separate header file, defining an independent parameter structure, for
each subsystem that meets the following conditions:

• The subsystem Code generation function packaging parameter is set to
Reusable function.

• The subsystem does not violate any code reuse limitations.
• The subsystem does not access parameters other than its own (such as

parameters of the root-level model).

Each subsystem parameter structure is referenced as a substructure of the root-level
parameter data structure, creating a structure hierarchy.

NonHierarchical

Generates a single, flat parameter data structure. Subsystem parameters are defined
as fields within the structure. A nonhierarchical data structure can reduce compiler
padding between word boundaries, producing more efficient compiled code.

Dependencies

• This parameter appears only for ERT-based targets.
• This parameter requires a Embedded Coder license when generating code.
• This parameter is enabled when you set Default parameter behavior to Inlined.

Command-Line Information
Parameter: InlinedParameterPlacement
Type: string
Value: 'Hierarchical' | 'NonHierarchical'
Default: 'Hierarchical'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-196

Application Setting

Traceability Hierarchical

Efficiency NonHierarchical

Safety precaution No impact

See Also

• “Flat Structures for Reusable Subsystem Parameters”
• Nonvirtual Subsystem Code Generation
• Optimizing a Model for Code Generation
• Optimization Pane

 Optimization Pane: Signals and Parameters

1-197

Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box allows you to declare specific
tunable parameters when you set Default parameter behavior to Inlined. The
parameters that you select appear in the generated code as tunable parameters. For
more information about Default parameter behavior, see Default parameter behavior.

Note Simulink Coder software ignores the settings of this dialog box if a model contains
references to other models. However, you can still generate code that uses tunable
parameters with model references, using Simulink.Parameter objects (see “Tunable
Parameters in the Generated Code for Referenced Models” for more information).

The dialog box has the following controls.

Source list

Displays a list of workspace variables. The options are:

1 Configuration Parameters Dialog Box

1-198

• MATLAB workspace — Lists all variables in the MATLAB workspace that have
numeric values.

• Referenced workspace variables — Lists only those variables referenced by the model.

Refresh list

Updates the source list. Click this button if you have added a variable to the workspace
since the last time the list was displayed.

Add to table

Adds the variables selected in the source list to the adjacent table of tunable parameters.

New

Defines a new parameter and adds it to the list of tunable parameters. Use this button to
create tunable parameters that are not yet defined in the MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB workspace.
You must create the variable yourself.

Storage class

Used for code generation. For more information, see “Storage class” on page 3-8.

Storage type qualifier

Used for code generation. For more information, see “Storage type qualifier” on page
3-8.

 Optimization Pane: Stateflow

1-199

Optimization Pane: Stateflow

When Simulink Coder is installed on your system, the Optimization > Stateflow pane
includes the following parameters:

In this section...

“Optimization Pane: Stateflow Tab Overview” on page 1-200
“Use bitsets for storing state configuration” on page 1-201
“Use bitsets for storing Boolean data” on page 1-203
“Base storage type for automatically created enumerations” on page 1-205

1 Configuration Parameters Dialog Box

1-200

Optimization Pane: Stateflow Tab Overview

Set up optimizations for a model's active configuration set.

Tips

• To open the Optimization: Stateflow pane, in the Simulink Editor, select Simulation
> Model Configuration Parameters > Optimization > Stateflow.

• Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system.

See Also

• “Optimize Generated Code” in the Stateflow documentation

 Optimization Pane: Stateflow

1-201

Use bitsets for storing state configuration

Use bitsets to reduce the amount of memory required to store state configuration
variables.

Settings

Default: Off

 On
Stores state configuration variables in bitsets. Potentially reduces the amount of
memory required to store the variables. Potentially requires more instructions to
access state configuration, which can result in less optimal code.

 Off
Stores state configuration variables in unsigned bytes. Potentially increases the
amount of memory required to store the variables. Potentially requires fewer
instructions to access state configuration, which can result in more optimal code.

Tips

• Selecting this check box can significantly reduce the amount of memory required to
store the variables. However, it can increase the amount of memory required to store
target code if the target processor does not include instructions for manipulating
bitsets.

• Select this check box for Stateflow charts that have a large number of sibling states at
a given level of the hierarchy.

• Clear this check box for Stateflow charts with a small number of sibling states at a
given level of the hierarchy.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information
Parameter: StateBitsets
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Configuration Parameters Dialog Box

1-202

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact

See Also

• “Optimize Generated Code” in the Stateflow documentation
• “Optimization Pane: Stateflow” on page 1-199

 Optimization Pane: Stateflow

1-203

Use bitsets for storing Boolean data

Use bitsets to reduce the amount of memory required to store Boolean data.

Settings

Default: Off

 On
Stores Boolean data in bitsets. Potentially reduces the amount of memory required to
store the data. Potentially requires more instructions to access the data, which can
result in less optimal code.

 Off
Stores Boolean data in unsigned bytes. Potentially increases the amount of memory
required to store the data. Potentially requires fewer instructions to access the data,
which can result in more optimal code.

Tips

• Select this check box for Stateflow charts that reference Boolean data infrequently.
• Clear this check box for Stateflow charts that reference Boolean data frequently.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information
Parameter: DataBitsets
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging Off
Traceability Off
Efficiency Off (execution, ROM), On (RAM)

1 Configuration Parameters Dialog Box

1-204

Application Setting

Safety precaution No impact

See Also

• “Optimize Generated Code” in the Stateflow documentation
• “Optimization Pane: Stateflow” on page 1-199

 Optimization Pane: Stateflow

1-205

Base storage type for automatically created enumerations

Set the storage type and size for enumerations created with active state output.

Settings

Default: Native Integer

Native Integer

Default target integer type
int32

32 bit signed integer type
int16

16 bit signed integer type
int8

8 bit signed integer type
uint16

16 bit unsigned integer type
uint8

8 bit unsigned integer type

Tips

• The default Native Integer is recommended for most models.
• If you need a smaller memory footprint for the generated enumerations, set the

storage type to a smaller size. The size must be large enough to hold the number of
states in the chart.

Dependency

This parameter requires a Simulink Coder license.

Command-Line Information
Parameter: ActiveStateOutputEnumStorageType
Type: string
Value: 'Native Integer' | 'int32' | 'int16' | 'int8' | 'uint16' | 'uint8'
Default: 'Native Integer'

1 Configuration Parameters Dialog Box

1-206

Diagnostics Pane: Solver

In this section...

“Solver Diagnostics Overview” on page 1-207
“Algebraic loop” on page 1-209
“Minimize algebraic loop” on page 1-211
“Block priority violation” on page 1-213
“Min step size violation” on page 1-215
“Sample hit time adjusting” on page 1-217
“Consecutive zero-crossings violation” on page 1-219
“Unspecified inheritability of sample time” on page 1-221
“Solver data inconsistency” on page 1-223
“Automatic solver parameter selection” on page 1-225
“Extraneous discrete derivative signals” on page 1-227
“State name clash” on page 1-229

 Diagnostics Pane: Solver

1-207

In this section...

“SimState interface checksum mismatch” on page 1-230
“SimState object from earlier release” on page 1-232

Solver Diagnostics Overview

1 Configuration Parameters Dialog Box

1-208

Specify what diagnostic actions Simulink software should take, if any, when it detects an
abnormal condition with the solver.

Configuration

Set the parameters displayed.

Tips

• To open the Diagnostics: Solver pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Diagnostics. The Solver pane appears.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Diagnosing Simulation Errors
• Sample Time Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-209

Algebraic loop

Select the diagnostic action to take if Simulink software detects an algebraic loop while
compiling the model.

Settings

Default: warning

none

When the Simulink software detects an algebraic loop, the software tries to solve the
algebraic loop. If the software cannot solve the algebraic loop, it reports an error and
the simulation terminates.

warning

When Simulink software detects an algebraic loop, it displays a warning and tries to
solve the algebraic loop. If the software cannot solve the algebraic loop, it reports an
error and the simulation terminates.

error

When Simulink software detects an algebraic loop, it terminates the simulation,
displays an error message, and highlights the portion of the block diagram that
comprises the loop.

Tips

• An algebraic loop generally occurs when an input port with direct feedthrough is
driven by the output of the same block, either directly, or by a feedback path through
other blocks with direct feedthrough. An example of an algebraic loop is this simple
scalar loop.

• When a model contains an algebraic loop, Simulink software calls a loop-solving
routine at each time step. The loop solver performs iterations to determine the
solution to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

• Use the error option to highlight algebraic loops when you simulate a model. This
causes Simulink software to display an error dialog (the Diagnostic Viewer) and

1 Configuration Parameters Dialog Box

1-210

recolor portions of the diagram that represent the first algebraic loop that it detects.
Simulink software uses red to color the blocks and lines that constitute the loop.
Closing the error dialog restores the diagram to its original colors.

• See Algebraic Loops for more information.

Command-Line Information
Parameter: AlgebraicLoopMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging error

Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Algebraic Loops
• Diagnosing Simulation Errors
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-211

Minimize algebraic loop

Select the diagnostic action to take if artificial algebraic loop minimization cannot be
performed for an atomic subsystem or Model block because an input port has direct
feedthrough.

When you set the Minimize algebraic loop occurrences parameter for an atomic
subsystem or a Model block, if Simulink detects an artificial algebraic loop, it attempts
to eliminate the loop by checking for non-direct-feedthrough blocks before simulating the
model. If Simulink cannot minimize the artificial algebraic loop, the simulation performs
the diagnostic action specified by the Minimize algebraic loop parameter.

Settings

Default: warning

none

Simulink takes no action.
warning

Simulink displays a warning that it cannot minimize the artificial algebraic loop.
error

Simulink terminates the simulation and displays an error that it cannot minimize
the artificial algebraic loop.

Tips

• If the port is involved in an artificial algebraic loop, Simulink software can remove the
loop only if at least one other input port in the loop lacks direct feedthrough.

• Simulink software cannot minimize artificial algebraic loops containing signals
designated as test points (see Working with Test Points).

Command-Line Information
Parameter: ArtificialAlgebraicLoopMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-212

Application Setting

Efficiency No impact
Traceability No impact
Safety precaution error

See Also

• Minimizing Artificial Algebraic Loops Using Simulink
• Diagnosing Simulation Errors
• Working with Test Points
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-213

Block priority violation

Select the diagnostic action to take if Simulink software detects a block priority
specification error.

Settings

Default: warning

warning

When Simulink software detects a block priority specification error, it displays a
warning.

error

When Simulink software detects a block priority specification error, it terminates the
simulation and displays an error message.

Tips

• Simulink software allows you to assign update priorities to blocks. Simulink software
executes the output methods of higher priority blocks before those of lower priority
blocks.

• Simulink software honors the block priorities that you specify only if they are
consistent with the Simulink block sorting algorithm. If Simulink software is unable
to honor a user specified block priority, it generates a block priority specification
error.

Command-Line Information
Parameter: BlockPriorityViolationMsg
Type: string
Value: 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-214

See Also

• Controlling and Displaying the Sorted Order
• Diagnosing Simulation Errors
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-215

Min step size violation

Select the diagnostic action to take if Simulink software detects that the next simulation
step is smaller than the minimum step size specified for the model.

Settings

Default: warning

warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• A minimum step size violation can occur if the specified error tolerance for the model
requires a step size smaller than the specified minimum step size. See Min step size
and Maximum order for more information.

• Simulink software allows you to specify the maximum number of consecutive
minimum step size violations permitted (see Number of consecutive min steps).

Command-Line Information
Parameter: MinStepSizeMsg
Type: string
Value: 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Min step size

1 Configuration Parameters Dialog Box

1-216

• Maximum order
• Number of consecutive min steps
• “Purely Discrete Systems”
• Diagnosing Simulation Errors
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-217

Sample hit time adjusting

Select the diagnostic action to take if Simulink software makes a minor adjustment to a
sample hit time while running the model.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.

Tips

• Simulink software might change a sample hit time if that hit time is close to the hit
time for another task. If Simulink software considers the difference to be due only
to numerical errors (for example, precision issues or roundoff errors), it changes the
sample hits of the faster task or tasks to exactly match the time of the slowest task
that has that hit.

• Over time, these sample hit changes might cause a discrepancy between the
numerical simulation results and the actual theoretical results.

• When this option is set to warning, the MATLAB Command Window displays a
warning like the following when Simulink software detects a change in the sample hit
time:

Warning: Timing engine warning: Changing the hit time for ...

Command-Line Information
Parameter: TimeAdjustmentMsg
Type: string
Value: 'none' | 'warning'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-218

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-219

Consecutive zero-crossings violation

Select the diagnostic action to take when Simulink software detects that the number of
consecutive zero crossings exceeds the specified maximum.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• If you select warning or error, Simulink software reports the current simulation
time, the number of consecutive zero crossings counted, and the type and name of the
block in which Simulink software detected the zero crossings.

• For more information, see Preventing Excessive Zero Crossings.

Dependency

This diagnostic applies only when you are using a variable-step solver and the zero-
crossing control is set to either Enable all or Use local settings.

Command-Line Information
Parameter: MaxConsecutiveZCsMsg
Type: string
Value: 'none' | 'warning'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-220

Application Setting

Efficiency No impact
Safety precaution warning or error

See Also

• Zero-Crossing Detection
• Zero-Crossing Control
• Number of consecutive zero crossings
• Time tolerance
• Diagnosing Simulation Errors
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-221

Unspecified inheritability of sample time

Select the diagnostic action to take if this model contains S-functions that do not specify
whether they preclude this model from inheriting their sample times from a parent
model.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Not specifying an inheritance rule may lead to incorrect simulation results.
• Simulink software checks for this condition only if the solver used to simulate this

model is a fixed-step discrete solver and the periodic sample time constraint for the
solver is set to ensure sample time independence

• For more information, see Periodic sample time constraint.

Command-Line Information
Parameter: UnknownTsInhSupMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-222

See Also

• Periodic sample time constraint
• Diagnosing Simulation Errors
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-223

Solver data inconsistency

Select the diagnostic action to take if Simulink software detects S-functions that have
continuous sample times, but do not produce consistent results when executed multiple
times.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Consistency checking can cause a significant decrease in performance (up to 40%).
• Consistency checking is a debugging tool that validates certain assumptions made by

Simulink ODE solvers. Use this option to:

• Validate your S-functions and ensure that they adhere to the same rules as
Simulink built-in blocks.

• Determine the cause of unexpected simulation results.
• Ensure that blocks produce constant output when called with a given value of t

(time).
• Simulink software saves (caches) output, the zero-crossing, the derivative, and state

values from one time step for use in the next time step. The value at the end of a time
step can generally be reused at the start of the next time step. Solvers, particularly
stiff solvers such as ode23s and ode15s, take advantage of this to avoid redundant
calculations. While calculating the Jacobian matrix, a stiff solver can call a block's
output functions many times at the same value of t.

• When consistency checking is enabled, Simulink software recomputes the appropriate
values and compares them to the cached values. If the values are not the same, a
consistency error occurs. Simulink software compares computed values for these
quantities:

1 Configuration Parameters Dialog Box

1-224

• Outputs
• Zero crossings
• Derivatives
• States

Command-Line Information
Parameter: ConsistencyChecking
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency none

Safety precaution No impact

See Also

• Diagnosing Simulation Errors
• Choosing a Solver
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-225

Automatic solver parameter selection

Select the diagnostic action to take if Simulink software changes a solver parameter
setting.

Settings

Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.

Tips

When enabled, this option notifies you if:

• Simulink changes a user-modified parameter to make it consistent with other model
settings.

• Simulink automatically selects solver parameters for the model, such as
FixedStepSize.

For example, if you simulate a discrete model that specifies a continuous solver, Simulink
software changes the solver type to discrete and displays a warning about this change at
the MATLAB command line.

Command-Line Information
Parameter: SolverPrmCheckMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-226

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Choosing a Solver
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-227

Extraneous discrete derivative signals

Select the diagnostic action to take when a discrete signal appears to pass through a
Model block to the input of a block with continuous states.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This error can occur if a discrete signal passes through a Model block to the input of
a block with continuous states, such as an Integrator block. In this case, Simulink
software cannot determine with certainty the minimum rate at which it needs to reset
the solver to solve this model accurately.

• If this diagnostic is set to none or warning, Simulink software resets the solver
whenever the value of the discrete signal changes. This ensures accurate simulation
of the model if the discrete signal is the source of the signal entering the block with
continuous states. However, if the discrete signal is not the source of the signal
entering the block with continuous states, resetting the solver at the rate the discrete
signal changes can lead to the solver being reset more frequently than necessary,
slowing down the simulation.

• If this diagnostic is set to error, Simulink software halts when compiling this model
and displays an error.

Dependency

This diagnostic applies only when you are using a variable-step ode solver and the block
diagram contains Model blocks.

Command-Line Information
Parameter: ModelReferenceExtraNoncontSigs

1 Configuration Parameters Dialog Box

1-228

Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Diagnosing Simulation Errors
• Choosing a Solver
• Diagnostics Pane: Solver

 Diagnostics Pane: Solver

1-229

State name clash

Select the diagnostic action to take when a name is used for more than one state in the
model.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.

Tips

• This diagnostic applies for continuous and discrete states during simulation.
• This diagnostic applies only if you save states to the MATLAB workspace using the

format Structure or Structure with time. If you do not save states in structure
format, the state names are not used, and therefore the diagnostic will not warn you
about a naming conflict.

Command-Line Information
Parameter: StateNameClashWarn
Type: string
Value: 'none' | 'warning'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Diagnosing Simulation Errors

1 Configuration Parameters Dialog Box

1-230

• Data Import/Export Pane
• “Save Runtime Data from Simulation”
• Diagnostics Pane: Solver

SimState interface checksum mismatch

Use this check to ensure that the interface checksum is identical to the model checksum
before loading the SimState.

Settings

Default: warning

none

Simulink software does not compare the interface checksum to the model checksum.
warning

The interface checksum in the SimState is different than the model checksum.
error

When Simulink detects that a change in the configuration settings occurred after
saving the SimState, it does not load the SimState and reports an error.

Command-Line Information
Parameter: SimStateInterfaceChecksumMismatchMsg
Type: string
Value: 'warning' | 'error' | 'none'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Save and Restore Simulation State as SimState”

 Diagnostics Pane: Solver

1-231

• Simulink.BlockDiagram.getChecksum

1 Configuration Parameters Dialog Box

1-232

SimState object from earlier release

Use this check to report that the SimState was generated by an earlier version of
Simulink.

Settings

Default: error

warning

Simulink will restore as much of this SimState as possible.
error

When Simulink detects that the SimState was generated by an earlier version of
Simulink, it does not attempt to load the object.

Command-Line Information
Parameter: SimStateOlderReleaseMsg
Type: string
Value: 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

“Save and Restore Simulation State as SimState”

 Diagnostics Pane: Sample Time

1-233

Diagnostics Pane: Sample Time

In this section...

“Sample Time Diagnostics Overview” on page 1-234
“Source block specifies -1 sample time” on page 1-235
“Multitask rate transition” on page 1-237
“Single task rate transition” on page 1-239
“Multitask conditionally executed subsystem” on page 1-241
“Tasks with equal priority” on page 1-243
“Enforce sample times specified by Signal Specification blocks” on page 1-245

1 Configuration Parameters Dialog Box

1-234

Sample Time Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when it detects a
compilation error related to model sample times.

Configuration

Set the parameters displayed.

Tips

• To open the Sample Time pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Sample Time.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Diagnosing Simulation Errors
• Solver Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Sample Time

1-235

Source block specifies -1 sample time

Select the diagnostic action to take if a source block (such as a Sine Wave block) specifies
a sample time of -1.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• The Random Source block does not obey this parameter. If its Sample time
parameter is set to -1, the Random Source block inherits its sample time from its
output port and never produces warnings or errors.

• Some Communications System Toolbox™ blocks internally inherit sample times,
which can be a useful and valid modeling technique. Set this parameter to none for
these types of models.

Command-Line Information
Parameter: InheritedTsInSrcMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-236

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Sample Time

1-237

Multitask rate transition

Select the diagnostic action to take if an invalid rate transition occurred between two
blocks operating in multitasking mode.

Settings

Default: error

warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This parameter allows you to adjust error checking for sample rate transitions
between blocks that operate at different sample rates.

• Use this option for models of real-time multitasking systems to ensure detection
of illegal rate transitions between tasks that can result in a task's output being
unavailable when needed by another task. You can then use Rate Transition blocks to
eliminate such illegal rate transitions from the model.

Command-Line Information
Parameter: MultiTaskRateTransMsg
Type: string
Value: 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Rate Transition block

1 Configuration Parameters Dialog Box

1-238

• Model Execution and Rate Transitions
• Single-Tasking and Multitasking Execution Modes
• “Handle Rate Transitions”
• Tasking mode for periodic sample times
• Diagnosing Simulation Errors
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Sample Time

1-239

Single task rate transition

Select the diagnostic action to take if a rate transition occurred between two blocks
operating in single-tasking mode.

Settings

Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.

Tips

• This parameter allows you to adjust error checking for sample rate transitions
between blocks that operate at different sample rates.

• Use this parameter when you are modeling a single-tasking system. In such systems,
task synchronization is not an issue.

• Since variable step solvers are always single tasking, this parameter applies to them.

Command-Line Information
Parameter: SingleTaskRateTransMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none or error

1 Configuration Parameters Dialog Box

1-240

See Also

• Rate Transition block
• Model Execution and Rate Transitions
• Single-Tasking and Multitasking Execution Modes
• “Handle Rate Transitions”
• Tasking mode for periodic sample times
• Diagnosing Simulation Errors
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Sample Time

1-241

Multitask conditionally executed subsystem

Select the diagnostic action to take if Simulink software detects a subsystem that may
cause data corruption or non-deterministic behavior.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• These types of subsystems can be caused by either of the following conditions:

• Your model uses multitasking solver mode and it contains an enabled subsystem
that operates at multiple rates.

• Your model contains a conditionally executed subsystem that can reset its states
and that contains an asynchronous subsystem.

These types of subsystems can cause corrupted data or nondeterministic behavior in a
real-time system that uses code generated from the model.

• For models that use multitasking solver mode and contain an enabled subsystem
that operates at multiple rates, consider using single-tasking solver mode or using a
single-rate enabled subsystem instead.

• For models that contain a conditionally executed subsystem that can reset its states
and that contains an asynchronous subsystem, consider moving the asynchronous
subsystem outside the conditionally executed subsystem.

Command-Line Information
Parameter: MultiTaskCondExecSysMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

1 Configuration Parameters Dialog Box

1-242

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Tasking mode for periodic sample times
• Diagnosing Simulation Errors
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Sample Time

1-243

Tasks with equal priority

Select the diagnostic action to take if Simulink software detects two tasks with equal
priority that can preempt each other in the target system.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This condition can occur when one asynchronous task of the target represented by
this model has the same priority as one of the target's asynchronous tasks.

• This option must be set to Error if the target allows tasks having the same priority to
preempt each other.

Command-Line Information
Parameter: TasksWithSamePriorityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none or error

1 Configuration Parameters Dialog Box

1-244

See Also

• Diagnosing Simulation Errors
• “Rate Transitions and Asynchronous Blocks”
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Sample Time

1-245

Enforce sample times specified by Signal Specification blocks

Select the diagnostic action to take if the sample time of the source port of a signal
specified by a Signal Specification block differs from the signal's destination port.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• The Signal Specification block allows you to specify the attributes of the signal
connected to its input and output ports. If the specified attributes conflict with the
attributes specified by the blocks connected to its ports, Simulink software displays an
error when it compiles the model, for example, at the beginning of a simulation. If no
conflict exists, Simulink software eliminates the Signal Specification block from the
compiled model.

• You can use the Signal Specification block to ensure that the actual attributes of a
signal meet desired attributes, or to ensure correct propagation of signal attributes
throughout a model.

Command-Line Information
Parameter: SigSpecEnsureSampleTimeMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-246

Application Setting

Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Signal Specification block
• Diagnostics Pane: Sample Time

 Diagnostics Pane: Data Validity

1-247

Diagnostics Pane: Data Validity

In this section...

“Data Validity Diagnostics Overview” on page 1-249
“Signal resolution” on page 1-250
“Division by singular matrix” on page 1-252
“Underspecified data types” on page 1-254
“Simulation range checking” on page 1-257

1 Configuration Parameters Dialog Box

1-248

In this section...

“Wrap on overflow” on page 1-259
“Saturate on overflow” on page 1-261
“Inf or NaN block output” on page 1-263
“"rt" prefix for identifiers” on page 1-265
“Detect downcast” on page 1-267
“Detect overflow” on page 1-269
“Detect underflow” on page 1-271
“Detect precision loss” on page 1-273
“Detect loss of tunability” on page 1-275
“Detect read before write” on page 1-277
“Detect write after read” on page 1-279
“Detect write after write” on page 1-281
“Multitask data store” on page 1-283
“Duplicate data store names” on page 1-285
“Detect multiple driving blocks executing at the same time step” on page 1-287
“Underspecified initialization detection” on page 1-289
“Check undefined subsystem initial output” on page 1-291
“Check preactivation output of execution context” on page 1-295
“Check runtime output of execution context” on page 1-297
“Array bounds exceeded” on page 1-301
“Model Verification block enabling” on page 1-303

 Diagnostics Pane: Data Validity

1-249

Data Validity Diagnostics Overview

Specify what diagnostic action Simulink software should take, if any, when it detects a
condition that could compromise the integrity of data defined by the model, as well as the
Data Validity parameters that pertain to code generation, and are used to debug a model.

Configuration

Set the parameters displayed.

Tips

• To open the Data Validity pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Data Validity.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Data Validity

1 Configuration Parameters Dialog Box

1-250

Signal resolution

Select how Simulink software resolves signals to Simulink.Signal objects. See
“Explicit and Implicit Symbol Resolution” for more information.

Settings

Default: Explicit only

Explicit only

Do not perform implicit signal resolution. Only explicitly specified signal resolution
occurs. This is the recommended setting.

Explicit and implicit

Perform implicit signal resolution wherever possible, without posting any warnings
about the implicit resolutions.

Explicit and warn implicit

Perform implicit signal resolution wherever possible, posting a warning of each
implicit resolution that occurs.

Tips

• Use the Signal Properties dialog box (see Signal Properties Dialog Box) to specify
explicit resolution for signals.

• Use the State Attributes pane on dialog boxes of blocks that have discrete states,
e.g., the Discrete-Time Integrator block, to specify explicit resolution for discrete
states.

• Multiple signals can resolve to the same signal object and have the properties that the
object specifies.

• MathWorks® discourages using implicit signal resolution except for fast prototyping,
because implicit resolution slows performance, complicates model validation, and can
have nondeterministic effects.

• Simulink software provides the disableimplicitsignalresolution function,
which you can use to change settings throughout a model so that it does not use
implicit signal resolution.

Command-Line Information
Parameter: SignalResolutionControl
Type: string

 Diagnostics Pane: Data Validity

1-251

Value: 'UseLocalSettings' | 'TryResolveAll' | 'TryResolveAllWithWarning'
Default: 'UseLocalSettings'

SignalResolutionControl Value Equivalent Signal Resolution Value

'UseLocalSettings' Explicit only

'TryResolveAll' Explicit and implicit

'TryResolveAllWithWarning' Explicit and warn implicit

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Explicit only

See Also

• Diagnosing Simulation Errors
• Simulink.Signal

• Signal Properties Dialog Box
• Discrete-Time Integrator block
• Diagnostics Pane: Data Validity

1 Configuration Parameters Dialog Box

1-252

Division by singular matrix

Select the diagnostic action to take if the Product block detects a singular matrix while
inverting one of its inputs in matrix multiplication mode.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

For models referenced in Accelerator mode, Simulink ignores the Division by singular
matrix parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: CheckMatrixSingularityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact

 Diagnostics Pane: Data Validity

1-253

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Product block
• Diagnostics Pane: Data Validity

1 Configuration Parameters Dialog Box

1-254

Underspecified data types

Select the diagnostic action to take if Simulink software could not infer the data type of a
signal during data type propagation.

Identify and Resolve Underspecified Data Types

This example shows how to use the configuration parameter Underspecified data
types to identify and resolve an underspecified data type.

1 Open the example model ex_underspecified_data_types.
2 On the Configuration Parameters > Diagnostics > Data Validity pane, set

Underspecified data types to warning.
3 Update the diagram.

The signals in the model use the data type uint8, and the model generates a
warning.

4 Open the Diagnostic Viewer. The warning indicates that the output signal of the
Constant block has an underspecified data type.

5 Open the Constant block dialog box.

On the Signal Attributes tab, Output data type is set to Inherit: Inherit
via back propagation. The Constant block output inherits a data type from the
destination block. In this case, the destination is the Sum block.

6 Open the Sum block dialog box.

On the Signal Attributes tab, Accumulator data type is set to Inherit:
Inherit via internal rule. Sum blocks cast all of their input signals to the
selected accumulator data type. In this case, the accumulator data type is specified
as an inherited type.

7 Open the Inport block dialog box. On the Signal Attributes tab, Data type is set to
uint8.

The data type of the Constant block output signal is underspecified because the source
and destination blocks each apply an inherited data type. The signal cannot identify
a data type to inherit. However, the model uses heuristic rules to determine the most
appropriate type to use, uint8.

To resolve the underspecified data type, you can use one of these techniques:

 Diagnostics Pane: Data Validity

1-255

• On the Signal Attributes tab of the Constant block dialog box, specify Output data
type as a particular numeric type, such as uint8.

• On the Signal Attributes tab of the Sum block dialog box, select the check box
Require all inputs to have the same data type.

With this setting, the Sum block applies the data type of the first input, uint8, to the
underspecified data type of the second input.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnderSpecifiedDataTypeMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• “Default for underspecified data type” on page 1-138
• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

1 Configuration Parameters Dialog Box

1-256

• “Use single Data Type as Default for Underspecified Types”

 Diagnostics Pane: Data Validity

1-257

Simulation range checking

Select the diagnostic action to take when signals exceed specified minimum or maximum
values.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Use a block's Output minimum or Minimum parameter to specify the minimum
value that the block should output.

• Use a block's Output maximum or Maximum parameter to specify the maximum
value that the block should output.

• Enable this diagnostic to check whether block outputs exceed the minimum or
maximum values that you specified.

• When Simulation range checking is enabled, Simulink software performs signal
range checking at every time step during a simulation. Setting this diagnostic to
warning or error can cause a decrease in simulation performance.

• For models referenced in Accelerator mode, Simulink ignores the Simulation range
checking parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

1 Configuration Parameters Dialog Box

1-258

Command-Line Information
Parameter: SignalRangeChecking
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging warning or error
Traceability warning or error
Efficiency none

Safety precaution error

See Also

• “Signal Ranges”
• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-259

Wrap on overflow

Select the diagnostic action to take if the value of a signal overflows the signal data type
and wraps around.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This diagnostic applies only to overflows which wrap for integer and fixed-point data
types.

• This diagnostic also reports division by zero for all data types, including floating-point
data types.

• To check for floating-point overflows (for example, Inf or NaN) for double or single
data types, select the Inf or NaN block output diagnostic. (See “Inf or NaN block
output” on page 1-263 for more information.)

• For models referenced in Accelerator mode, Simulink ignores the Wrap on overflow
parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: IntegerOverflowMsg

1 Configuration Parameters Dialog Box

1-260

Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• “Handle Overflows in Simulink Models”
• Diagnosing Simulation Errors
• “Local and Global Data Stores”
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-261

Saturate on overflow

Select the diagnostic action to take if the value of a signal is too large to be represented
by the signal data type, resulting in a saturation.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This diagnostic applies only to overflows which saturate for integer and fixed-point
data types.

• To check for floating-point overflows (for example, Inf or NaN) for double or single
data types, select the Inf or NaN block output diagnostic. (See “Inf or NaN block
output” on page 1-263 for more information.)

Command-Line Information
Parameter: IntegerSaturationMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-262

See Also

• “Handle Overflows in Simulink Models”
• Diagnosing Simulation Errors
• “Local and Global Data Stores”
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-263

Inf or NaN block output

Select the diagnostic action to take if the value of a block output is Inf or NaN at the
current time step.

Note: Accelerator mode does not support any runtime diagnostics.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This diagnostic applies only to floating-point overflows for double or single data
types.

• To check for integer and fixed-point overflows, select the Wrap on overflow
diagnostic. (See “Wrap on overflow” on page 1-259 for more information.)

• For models referenced in Accelerator mode, Simulink ignores the Info or NaN block
output parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: SignalInfNanChecking

1 Configuration Parameters Dialog Box

1-264

Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-265

"rt" prefix for identifiers

Select the diagnostic action to take during code generation if a Simulink object name (the
name of a parameter, block, or signal) begins with rt.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• The default setting (error) causes code generation to terminate with an error if it
encounters a Simulink object name (parameter, block, or signal), that begins with rt.

• This is intended to prevent inadvertent clashes with generated identifiers whose
names begins with rt.

Command-Line Information
Parameter: RTPrefix
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-266

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-267

Detect downcast

Select the diagnostic action to take when a parameter downcast occurs during
simulation.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• A parameter downcast occurs if the computation of block output required converting
the parameter's specified type to a type having a smaller range of values (for example,
from uint32 to uint8).

• This diagnostic applies only to named tunable parameters.

Command-Line Information
Parameter: ParameterDowncastMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-268

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-269

Detect overflow

Select the diagnostic action to take if a parameter overflow occurs during simulation.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• A parameter overflow occurs if Simulink software encounters a parameter whose data
type's range is not large enough to accommodate the parameter's ideal value (the
ideal value is either too large or too small to be represented by the data type). For
example, suppose that the parameter's ideal value is 200 and its data type is int8.
Overflow occurs in this case because the maximum value that int8 can represent is
127.

• Parameter overflow differs from parameter precision loss, which occurs when the
ideal parameter value is within the range of the data type and scaling being used, but
cannot be represented exactly.

• Both parameter overflow and precision loss are quantization errors, and the
distinction between them can be a fine one. The Detect overflow diagnostic reports
all quantization errors greater than one bit. For very small parameter quantization
errors, precision loss will be reported rather than an overflow when

Max Slope V Min Slopeideal+() ≥ > -()

where

• Max is the maximum value representable by the parameter data type
• Min is the minimum value representable by the parameter data type
• Slope is the slope of the parameter data type (slope = 1 for integers)

1 Configuration Parameters Dialog Box

1-270

• Videal is the ideal value of the parameter

Command-Line Information
Parameter: ParameterOverflowMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-271

Detect underflow

Select the diagnostic action to take when a parameter underflow occurs during
simulation.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Parameter underflow occurs when Simulink software encounters a parameter whose
data type does not have enough precision to represent the parameter's ideal value
because the ideal value is too small.

• When parameter underflow occurs, casting the ideal value to the data type causes the
parameter's modeled value to become zero, and therefore to differ from its ideal value.

Command-Line Information
Parameter: ParameterUnderflowMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-272

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-273

Detect precision loss

Select the diagnostic action to take when parameter precision loss occurs during
simulation.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Precision loss occurs when Simulink software encounters a parameter whose data
type does not have enough precision to represent the parameter's value exactly. As a
result, the modeled value differs from the ideal value.

• Parameter precision loss differs from parameter overflow, which occurs when the
range of the parameter's data type, i.e., that maximum value that it can represent, is
smaller than the ideal value of the parameter.

• Both parameter overflow and precision loss are quantization errors, and the
distinction between them can be a fine one. The Detect Parameter overflow
diagnostic reports all parameter quantization errors greater than one bit. For very
small parameter quantization errors, precision loss will be reported rather than an
overflow when

Max Slope V Min Slopeideal+() ≥ > -()

where

• Max is the maximum value representable by the parameter data type.
• Min is the minimum value representable by the parameter data type.
• Slope is the slope of the parameter data type (slope = 1 for integers).
• Videal is the full-precision, ideal value of the parameter.

1 Configuration Parameters Dialog Box

1-274

Command-Line Information
Parameter: ParameterPrecisionLossMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-275

Detect loss of tunability

Select the diagnostic action to take when an expression with tunable variables is reduced
to its numerical equivalent.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tip

If a tunable workspace variable is modified by Mask Initialization code, or is used in an
arithmetic expression with unsupported operators or functions, the expression is reduced
to a numeric expression and therefore cannot be tuned.

Command-Line Information
Parameter: ParameterTunabilityLossMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors

1 Configuration Parameters Dialog Box

1-276

• Tunable Expressions
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-277

Detect read before write

Select the diagnostic action to take if the model attempts to read data from a data store
to which it has not written data in this time step.

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in Accelerator and Rapid Accelerator mode, if
the Detect read before write parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
to Disable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: ReadBeforeWriteMsg

1 Configuration Parameters Dialog Box

1-278

Type: string
Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'

Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Enable all as errors

See Also

• Diagnosing Simulation Errors
• “Local and Global Data Stores”
• Data Store Memory block
• Simulink.Signal object
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-279

Detect write after read

Select the diagnostic action to take if the model attempts to write data to a data store
after previously reading data from it in the current time step.

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in Accelerator and Rapid Accelerator mode, if
the Detect write after read parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
to Disable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: WriteAfterReadMsg

1 Configuration Parameters Dialog Box

1-280

Type: string
Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'

Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Enable all as errors

See Also

• Diagnosing Simulation Errors
• “Local and Global Data Stores”
• Data Store Memory block
• Simulink.Signal object
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-281

Detect write after write

Select the diagnostic action to take if the model attempts to write data to a data store
twice in succession in the current time step.

Settings

Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in Accelerator and Rapid Accelerator mode, if
the Detect write after write parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
to Disable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: WriteAfterWriteMsg

1 Configuration Parameters Dialog Box

1-282

Type: string
Value: 'UseLocalSettings' | 'DisableAll' | 'EnableAllAsWarning' |
'EnableAllAsError'

Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Enable all as errors

See Also

• Diagnosing Simulation Errors
• “Local and Global Data Stores”
• Data Store Memory block
• Simulink.Signal object
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-283

Multitask data store

Select the diagnostic action to take when one task reads data from a Data Store Memory
block to which another task writes data.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Such a situation is safe only if one of the tasks cannot interrupt the other, such as
when the data store is a scalar and the writing task uses an atomic copy operation to
update the store or the target does not allow the tasks to preempt each other.

• You should disable this diagnostic (set it to none) only if the application warrants it,
such as if the application uses a cyclic scheduler that prevents tasks from preempting
each other.

Command-Line Information
Parameter: MultiTaskDSMMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-284

See Also

• Diagnosing Simulation Errors
• “Local and Global Data Stores”
• Data Store Memory block
• Simulink.Signal object
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-285

Duplicate data store names

Select the diagnostic action to take when the model contains multiple data stores that
have the same name. The data stores can be defined with Data Store Memory blocks or
Simulink.Signal objects.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tip

This diagnostic is useful for detecting errors that can occur when a lower-level data store
unexpectedly shadows a higher-level data store that has the same name.

Command-Line Information
Parameter: UniqueDataStoreMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Diagnosing Simulation Errors

1 Configuration Parameters Dialog Box

1-286

• “Local and Global Data Stores”
• Data Store Memory block
• Simulink.Signal object
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-287

Detect multiple driving blocks executing at the same time step

Select the diagnostic action to take when the software detects a Merge block with more
than one driving block executing at the same time step.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Connecting the inputs of a Merge block to multiple driving blocks that execute at the
same time step can lead to inconsistent results for both simulation and generated
code. Set Detect multiple driving blocks executing at the same time step to
error to avoid such situations.

• If Underspecified initialization detection is set to Simplified, this parameter
is disabled, and Simulink software automatically uses the strictest setting (error) for
this diagnostic. Multiple driving blocks executing at the same time step always result
in an error.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information
Parameter: MergeDetectMultiDrivingBlocksExec
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

1 Configuration Parameters Dialog Box

1-288

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Merge block
• “Check usage of Merge blocks”
• “Underspecified initialization detection” on page 1-289
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-289

Underspecified initialization detection

Select how Simulink software handles initialization of initial conditions for conditionally
executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time
Integrator blocks.

Settings

Default: Classic

Classic

Initial conditions are initialized the same way they were prior to R2008b.
Simplified

Initial conditions are initialized using the enhanced behavior, which can improve the
consistency of simulation results.

Tips

• Use Classic to ensure compatibility with previous releases of Simulink. Use
Simplified to improve the consistency of simulation results, especially for models
that do not specify initial conditions for conditional subsystem output ports, and
for models that have conditionally executed subsystem output ports connected to
S-functions. For more information, see “Address Classic Mode Issues by Using
Simplified Mode”.

• For existing models, MathWorks recommends using the Model Advisor to migrate
your model to the new settings. To migrate your model to simplified initialization
mode, run the following Model Advisor checks:

• “Check bus usage”
• “Check usage of Merge blocks”
• “Check usage of Outport blocks”
• “Check usage of Discrete-Time Integrator blocks”
• “Check model settings for migration to simplified initialization mode”

For more information, see “Address Classic Mode Issues by Using Simplified Mode”.
• When using Simplified initialization mode, you must set “Bus signal treated as

vector” on page 1-331 to error on the Connectivity Diagnostics pane.

1 Configuration Parameters Dialog Box

1-290

Dependencies

Selecting Classic enables the following parameters:

• Detect multiple driving blocks executing at the same time step
• Check undefined subsystem initial output
• Check preactivation output of execution context
• Check runtime output of execution context

Selecting Simplified disables these parameters, and automatically sets Detect
multiple driving blocks executing at the same time step to error.

Command-Line Information
Parameter: UnderspecifiedInitializationDetection
Type: string
Value: 'Classic' | 'Simplified'
Default: 'Classic'

Recommended Settings

Application Setting

Debugging Simplified

Traceability Simplified

Efficiency Simplified

Safety precaution Simplified

See Also

• “Conditional Subsystem Output Initialization”
• “Migrating to Simplified Initialization Mode Overview”
• Merge block
• Discrete-Time Integrator block
• “Conditional Subsystems”
• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-291

Check undefined subsystem initial output

Specify whether to display a warning if the model contains a conditionally executed
subsystem in which a block with a specified initial condition drives an Outport block with
an undefined initial condition

Settings

Default: On

 On
Displays a warning if the model contains a conditionally executed subsystem in
which a block with a specified initial condition drives an Outport block with an
undefined initial condition.

 Off
Does not display a warning.

Tips

• This situation occurs when a block with a specified initial condition, such as a
Constant, Initial Condition, or Delay block, drives an Outport block with an undefined
initial condition (Initial output parameter is set to []).

• Models with such subsystems can produce initial results (i.e., before initial activation
of the conditionally executed subsystem) in the current release that differ from initial
results produced in Release 13 or earlier releases.

Consider for example the following model.

1 Configuration Parameters Dialog Box

1-292

This model does not define the initial condition of the triggered subsystem's output
port.

The following figure compares the superimposed output of this model's Step block and
the triggered subsystem in Release 13 and the current release.

 Diagnostics Pane: Data Validity

1-293

Notice that the initial output of the triggered subsystem differs between the two
releases. This is because Release 13 and earlier releases use the initial output of
the block connected to the output port (i.e., the Constant block) as the triggered
subsystem's initial output. By contrast, this release outputs 0 as the initial output of
the triggered subsystem because the model does not specify the port's initial output.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information
Parameter: CheckSSInitialOutputMsg
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

1 Configuration Parameters Dialog Box

1-294

Application Setting

Safety precaution On

See Also

• Diagnosing Simulation Errors
• “Conditional Subsystems”
• “Underspecified initialization detection” on page 1-289
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-295

Check preactivation output of execution context

Specify whether to display a warning if Simulink software detects potential initial output
differences from previous releases.

Settings

Default: Off

 On
Displays a warning if Simulink software detects potential initial output differences
from previous releases.

 Off
Does not display a warning.

Tips

• This diagnostic is triggered if the model contains a block that meets the following
conditions:

• The block produces nonzero output for zero input (e.g., a Cosine block).
• The block is connected to an output of a conditionally executed subsystem.
• The block inherits its execution context from that subsystem.
• The Outport to which it is connected has an undefined initial condition, i.e., the

Outport block's Initial output parameter is set to [].
• Models with blocks that meet these criteria can produce initial results (i.e., before the

conditionally executed subsystem is first activated in the current release that differ
from initial results produced in Release 13 or earlier releases.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information
Parameter: CheckExecutionContextPreStartOutputMsg
Type: string
Value: 'on' | 'off'
Default: 'on'

1 Configuration Parameters Dialog Box

1-296

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On

See Also

• Diagnosing Simulation Errors
• “Underspecified initialization detection” on page 1-289
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-297

Check runtime output of execution context

Specify whether to display a warning if Simulink software detects potential output
differences from previous releases.

Settings

Default: Off

 On
Displays a warning if Simulink software detects potential output differences from
previous releases.

 Off
Does not display a warning.

Tips

• This diagnostic is triggered if the model contains a block that meets the following
conditions:

• The block has a tunable parameter.
• The block is connected to an output of a conditionally executed subsystem.
• The block inherits its execution context from that subsystem.
• The Outport to which it is connected has an undefined initial condition, i.e., the

Outport block's Initial output parameter is set to [].
• Models with blocks that meet these criteria can produce results when the parameter

is tuned in the current release that differ from results produced in Release 13 or
earlier releases.

Consider for example the following model.

1 Configuration Parameters Dialog Box

1-298

In this model, the tunevar S-function changes the value of the Gain block's k
parameter and updates the diagram at simulation time 7 (i.e., it simulates tuning the
parameter).

The following figure compares the superimposed output of the model's Pulse
Generator block and its Gain block in Release 13 and the current release.

 Diagnostics Pane: Data Validity

1-299

Note that the output of the Gain block changes at time 7 in Release 13 but does not
change in the current release. This is because in Release 13, the Gain block belongs
to the execution context of the root system and hence executes at every time step
whereas in the current release, the Gain block belongs to the execution context of the
triggered subsystem and hence executes only when the triggered subsystem executes,
i.e., at times 5, 10, 15, and 20.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information
Parameter: CheckExecutionContextRuntimeOutputMsg
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-300

Application Setting

Efficiency No impact
Safety precaution On

See Also

• Diagnosing Simulation Errors
• “Underspecified initialization detection” on page 1-289
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-301

Array bounds exceeded

Select the diagnostic action to take when blocks write data to locations outside the
memory allocated to them.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• Use this option to check whether execution of each instance of a block during model
simulation writes data to memory locations not allocated to the block. This can
happen only if your model includes a user-written S-function that has a bug.

• Enabling this option slows down model execution considerably. Thus, you should
enable it only if you suspect that your model contains a user-written S-function that
has a bug.

• This option causes Simulink software to check whether a block writes outside the
memory allocated to it during simulation. Typically this can happen only if your
model includes a user-written S-function that has a bug.

• See Checking Array Bounds in “Error Handling” for more information on using this
option.

• For models referenced in Accelerator mode, Simulink ignores the Array bounds
exceeded parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

1 Configuration Parameters Dialog Box

1-302

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: ArrayBoundsChecking
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency none

Safety precaution No impact

See Also

• Diagnosing Simulation Errors
• Writing S-Functions
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Data Validity

1-303

Model Verification block enabling

Enable model verification blocks in the current model either globally or locally.

Settings

Default: Use local settings

Use local settings

Enables or disables blocks based on the value of the Enable assertion parameter
of each block. If a block's Enable assertion parameter is on, the block is enabled;
otherwise, the block is disabled.

Enable All

Enables all model verification blocks in the model regardless of the settings of their
Enable assertion parameters.

Disable All

Disables all model verification blocks in the model regardless of the settings of their
Enable assertion parameters.

Dependency

Simulation and code generation ignore the Model Verification block enabling
parameter when model verification blocks are inside a S-function.

Command-Line Information
Parameter: AssertControl
Type: string
Value: 'UseLocalSettings' | 'EnableAll' | 'DisableAll'
Default: 'UseLocalSettings'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Disable all

1 Configuration Parameters Dialog Box

1-304

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Data Validity

 Diagnostics Pane: Type Conversion

1-305

Diagnostics Pane: Type Conversion

In this section...

“Type Conversion Diagnostics Overview” on page 1-306
“Unnecessary type conversions” on page 1-307
“Vector/matrix block input conversion” on page 1-308
“32-bit integer to single precision float conversion” on page 1-310
“Detect underflow” on page 1-311
“Detect precision loss” on page 1-313
“Detect overflow” on page 1-315

1 Configuration Parameters Dialog Box

1-306

Type Conversion Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a data
type conversion problem while compiling the model.

Configuration

Set the parameters displayed.

Tips

• To open the Type Conversion pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Diagnostics > Type Conversion.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Data Validity Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Type Conversion

 Diagnostics Pane: Type Conversion

1-307

Unnecessary type conversions

Select the diagnostic action to take when Simulink software detects a Data Type
Conversion block used where no type conversion is necessary.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.

Command-Line Information
Parameter: UnnecessaryDatatypeConvMsg
Type: string
Value: 'none' | 'warning'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning

See Also

• Diagnosing Simulation Errors
• Data Type Conversion block
• Diagnostics Pane: Type Conversion

1 Configuration Parameters Dialog Box

1-308

Vector/matrix block input conversion

Select the diagnostic action to take when Simulink software detects a vector-to-matrix or
matrix-to-vector conversion at a block input.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

Simulink software converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

• If a vector signal is connected to an input that requires a matrix, Simulink software
converts the vector to a one-row or one-column matrix.

• If a one-column or one-row matrix is connected to an input that requires a vector,
Simulink software converts the matrix to a vector.

• If the inputs to a block consist of a mixture of vectors and matrices and the matrix
inputs all have one column or one row, Simulink software converts the vectors to
matrices having one column or one row, respectively.

Command-Line Information
Parameter: VectorMatrixConversionMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact

 Diagnostics Pane: Type Conversion

1-309

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Determining Output Signal Dimensions
• Diagnostics Pane: Type Conversion

1 Configuration Parameters Dialog Box

1-310

32-bit integer to single precision float conversion

Select the diagnostic action to take if Simulink software detects a 32-bit integer value
was converted to a floating-point value.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.

Tip

Converting a 32-bit integer value to a floating-point value can result in a loss of
precision. See Working with Data Types for more information.

Command-Line Information
Parameter: Int32ToFloatConvMsg
Type: string
Value: 'none' | 'warning'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning

See Also

• Diagnosing Simulation Errors
• Working with Data Types
• Diagnostics Pane: Type Conversion

 Diagnostics Pane: Type Conversion

1-311

Detect underflow

Specifies diagnostic action to take when a fixed-point constant underflow occurs during
simulation.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This diagnostic applies only to fixed-point constants (net slope and net bias).
• Fixed-point constant underflow occurs when Simulink software encounters a fixed-

point constant whose data type does not have enough precision to represent the ideal
value of the constant because the ideal value is too small.

• When fixed-point constant underflow occurs, casting the ideal value to the data type
causes the value of the fixed-point constant to become zero, and therefore to differ
from its ideal value.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstUnderflowMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-312

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Net Slope and Net Bias Precision Issues
• Diagnostics Pane: Type Conversion

 Diagnostics Pane: Type Conversion

1-313

Detect precision loss

Specifies diagnostic action to take when a fixed-point constant precision loss occurs
during simulation.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This diagnostic applies only to fixed-point constants (net slope and net bias).
• Precision loss occurs when Simulink software converts a fixed-point constant to a

data type which does not have enough precision to represent the exact value of the
constant. As a result, the quantized value differs from the ideal value.

• Fixed-point constant precision loss differs from fixed-point constant overflow.
Overflow occurs when the range of the parameter's data type, that is, the maximum
value that it can represent, is smaller than the ideal value of the parameter.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstPrecisionLossMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-314

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Net Slope and Net Bias Precision Issues
• Diagnostics Pane: Type Conversion

 Diagnostics Pane: Type Conversion

1-315

Detect overflow

Specifies diagnostic action to take when a fixed-point constant overflow occurs during
simulation.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• This diagnostic applies only to fixed-point constants (net slope and net bias).
• Overflow occurs when the Simulink software converts a fixed-point constant to a data

type whose range is not large enough to accommodate the ideal value of the constant.
The ideal value is either too large or too small to be represented by the data type. For
example, suppose that the ideal value is 200 and the converted data type is int8.
Overflow occurs in this case because the maximum value that int8 can represent is
127.

• Fixed-point constant overflow differs from fixed-point constant precision loss.
Precision loss occurs when the ideal fixed-point constant value is within the range of
the data type and scaling being used, but cannot be represented exactly.

Dependency

This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstOverflowMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

1 Configuration Parameters Dialog Box

1-316

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Net Slope and Net Bias Precision Issues
• Diagnostics Pane: Type Conversion

 Diagnostics Pane: Connectivity

1-317

Diagnostics Pane: Connectivity

In this section...

“Connectivity Diagnostics Overview” on page 1-319
“Signal label mismatch” on page 1-320
“Unconnected block input ports” on page 1-321
“Unconnected block output ports” on page 1-322
“Unconnected line” on page 1-323
“Unspecified bus object at root Outport block” on page 1-324
“Element name mismatch” on page 1-326
“Mux blocks used to create bus signals” on page 1-328

1 Configuration Parameters Dialog Box

1-318

In this section...

“Bus signal treated as vector” on page 1-331
“Non-bus signals treated as bus signals” on page 1-334
“Repair bus selections” on page 1-336
“Invalid function-call connection” on page 1-338
“Context-dependent inputs” on page 1-340

 Diagnostics Pane: Connectivity

1-319

Connectivity Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a
problem with block connections while compiling the model.

Configuration

Set the parameters displayed.

Tips

• To open the Connectivity pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Connectivity.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-320

Signal label mismatch

Select the diagnostic action to take when different names are used for the same signal
as that signal propagates through blocks in a model. This diagnostic does not check for
signal label mismatches on a virtual bus signal.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: SignalLabelMismatchMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• “Signal Names and Labels ”
• Diagnosing Simulation Errors
• Diagnostics Pane: Connectivity

 Diagnostics Pane: Connectivity

1-321

Unconnected block input ports

Select the diagnostic action to take when the model contains a block with an unconnected
input.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedInputMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-322

Unconnected block output ports

Select the diagnostic action to take when the model contains a block with an unconnected
output.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedOutputMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Connectivity

 Diagnostics Pane: Connectivity

1-323

Unconnected line

Select the diagnostic action to take when the Model contains an unconnected line or an
unmatched Goto or From block.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: UnconnectedLineMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Goto block
• From block
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-324

Unspecified bus object at root Outport block

Select the diagnostic action to take while generating a simulation target for a referenced
model if any of the model's root Outport blocks is connected to a bus but does not specify
a bus object (see Simulink.Bus).

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter: RootOutportRequireBusObject
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Outport block
• Simulink.Bus
• Diagnostics Pane: Connectivity

 Diagnostics Pane: Connectivity

1-325

1 Configuration Parameters Dialog Box

1-326

Element name mismatch

Select the diagnostic action to take if the name of a bus element does not match the name
specified by the corresponding bus object.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• You can use this diagnostic along with bus objects to ensure that your model meets
bus element naming requirements imposed by some blocks, such as the Switch block.

• In a Bus Creator block, you can enforce strong data typing:

1 For the Output data type, use a bus object.
2 Clear Override bus signal names from inputs.

Command-Line Information
Parameter: BusObjectLabelMismatch
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

 Diagnostics Pane: Connectivity

1-327

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-328

Mux blocks used to create bus signals

Select the diagnostic action to take if Simulink detects a Mux block that creates a virtual
bus.

Settings

Default: error

none

Simulink software takes no action.

This option disables checking for Mux blocks used to create virtual bus signals.
warning

Simulink software displays a warning.

With this option, if Simulink detects a Mux block that creates a virtual bus during
model update or simulation, it displays a message in the MATLAB Command
Window that identifies the offending block. It does this for the first ten Mux block
signals that it encounters that are treated as virtual buses.

error

Simulink terminates the simulation and displays an error message identifying the
first Mux block it encounters that is used to create a virtual bus. If this option is
selected, a Mux block with more than one input is allowed to output only a vector
signal, and a Mux block with only one input is allowed to output only a scalar, vector,
or matrix signal.

Tips

• This diagnostic detects use of Mux blocks to create virtual buses. The diagnostic
considers a signal created by a Mux block to be a virtual bus if the signal meets either
or both of the following conditions:

• A Bus Selector block individually selects one or more of the signal elements (as
opposed to the entire signal).

• The signal components have differing data types, numeric types (complex or real),
dimensionality, or sampling modes (see the DSP System Toolbox™ documentation
for information on frame-based sampling).

• If you are using simplified initialization mode, you must set this diagnostic to error.
For more information, see Underspecified initialization detection.

 Diagnostics Pane: Connectivity

1-329

• You can identify Mux blocks used to create virtual buses using the Model Advisor
Check bus usage check. For more information, see “Check bus usage”.

• See “Prevent Bus and Mux Mixtures” for more information.

Dependency

Selecting error enables the following parameter:

• Bus signal treated as vector

Command-Line Information
Parameter: StrictBusMsg
Type: string
Value: 'none' | 'warning' | 'ErrorLevel1' | 'WarnOnBusTreatedAsVector' |
'ErrorOnBusTreatedAsVector'

Default: 'ErrorLevel1'

Due to the requirement that Mux blocks used to create bus signals be error before
Bus signal treated as vector is enabled, one parameter, StrictBusMsg, can specify
all permutations of the two controls. The parameter can have one of five values. The
following table shows these values and the equivalent GUI control settings:

Value of StrictBusMsg (API) Mux blocks used to create bus
signals (GUI)

Bus signal treated as vector (GUI)

None none none

Warning warning none

ErrorLevel1 error none

WarnOnBusTreatedAsVector error warning

ErrorOnBusTreatedAsVector error error

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1 Configuration Parameters Dialog Box

1-330

See Also

• “Prevent Bus and Mux Mixtures”
• Diagnosing Simulation Errors
• Mux block
• Bus Creator block
• Bus Selector block
• Underspecified initialization detection
• “Check bus usage”
• Diagnostics Pane: Connectivity

 Diagnostics Pane: Connectivity

1-331

Bus signal treated as vector

Select the diagnostic action to take when Simulink software detects a virtual bus signal
that is used as a mux signal.

Settings

Default: warning

none

Disables checking for virtual buses used as muxes.
warning

Simulink software displays a warning if it detects a virtual bus used as a mux. This
option does not enforce strict bus behavior.

error

Simulink software terminates the simulation and displays an error message when it
builds a model that uses any virtual bus as a mux.

Tips

• This diagnostic detects the use of virtual bus signals used to specify muxes. The
diagnostic considers a virtual bus signal to be used as a mux if it is input to a Demux
block or to any block that can input a mux or a vector but is not formally defined as
bus-capable. See Bus-Capable Blocks for details.

• Virtual buses can be used as muxes only when they contain no nested buses and all
constituent signals have the same attributes. This practice is deprecated as of R2007a
(V6.6) and may cease to be supported at some future time. MathWorks, therefore,
discourages mixing virtual buses with muxes in new applications, and encourages
upgrading existing applications to avoid such mixtures.

• If you are using simplified initialization mode, you must set this diagnostic to error.
For more information, see Underspecified initialization detection.

• You can identify bus signals that are treated as a vectors using the Model Advisor
Check bus usage check. For more information, see “Check bus usage”.

• See “Prevent Bus and Mux Mixtures” for more information.

Dependency

This parameter is enabled only when Mux blocks used to create bus signals is set to
error.

1 Configuration Parameters Dialog Box

1-332

Command-Line Information
Parameter: StrictBusMsg
Type: string
Value: 'none' | 'warning' | 'ErrorLevel1' | 'WarnOnBusTreatedAsVector' |
'ErrorOnBusTreatedAsVector'

Default: 'warning'

Due to the requirement that Mux blocks used to create bus signals be error before
Bus signal treated as vector is enabled, one parameter, StrictBusMsg, can specify
all permutations of the two controls. The parameter can have one of five values. The
following table shows these values and the equivalent GUI control settings:

Value of StrictBusMsg (API) Mux blocks used to create bus
signals (GUI)

Bus signal treated as vector (GUI)

None none none

Warning warning none

ErrorLevel1 error none

WarnOnBusTreatedAsVector error warning

ErrorOnBusTreatedAsVector error error

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Avoiding Mux/Bus Mixtures
• Diagnosing Simulation Errors
• Bus-Capable Blocks
• Demux block
• Bus to Vector block
• Underspecified initialization detection

 Diagnostics Pane: Connectivity

1-333

• “Check bus usage”
• Simulink.BlockDiagram.addBusToVector
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-334

Non-bus signals treated as bus signals

Detect when Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block.

Settings

Default: none

none

Implicitly converts non-bus signals to bus signals to support connecting the signal to
a Bus Assignment or Bus Selector block.

warning

Simulink displays a warning, indicating that it has converted a non-bus signal to a
bus signal. The warning lists the non-bus signals that Simulink converts.

error

Simulink terminates the simulation without performing converting non-bus signals
to bus signals. The error message lists the non-bus signal that is being treated as a
bus signal.

Tips

• Using a Mux block to create a virtual bus does not support strong type checking and
increases the likelihood of runtime errors. In new applications, do not use Mux blocks
to create bus signals. Consider upgrading existing applications to that use of Mux
blocks.

• Simulink generates a warning when you load a model created in a release prior to
R2010a, if that model contains a Mux block to create a bus signal. For new models,
Simulink generates an error.

• See Avoiding Mux/Bus Mixtures for more information.

Dependency

This parameter is enabled only when Mux blocks used to create bus signals is set to
error.

Command-Line Information
Parameter: NonBusSignalsTreatedAsBus
Type: string

 Diagnostics Pane: Connectivity

1-335

Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Avoiding Mux/Bus Mixtures
• Diagnosing Simulation Errors
• Bus-Capable Blocks
• Demux block
• Bus to Vector block
• Simulink.BlockDiagram.addBusToVector
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-336

Repair bus selections

Repair broken selections in the Bus Selector and Bus Assignment block parameter
dialogs due to upstream bus hierarchy changes.

Settings

Default: Warn and repair

Warn and repair

Simulink displays a warning, indicating the block parameters for Bus Selector and
Bus Assignment blocks that Simulink repaired to reflect upstream bus hierarchy
changes.

Error without repair

Simulink terminates the simulation and displays an error message indicating the
block parameters that you need to repair for Bus Selector and Bus Assignment blocks
to reflect upstream bus hierarchy changes.

Tips

• See Avoiding Mux/Bus Mixtures for more information.

Dependency

This parameter is enabled only when Mux blocks used to create bus signals is set to
error.

Command-Line Information
Parameter: BusNameAdapt
Type: string
Values: 'WarnAndRepair' | 'ErrorWithoutRepair'
Default: 'WarnAndRepair'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

 Diagnostics Pane: Connectivity

1-337

Application Setting

Safety precaution Warn and repair

See Also

• Avoiding Mux/Bus Mixtures
• “Nest Buses”
• Diagnosing Simulation Errors
• Bus-Capable Blocks
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-338

Invalid function-call connection

Select the diagnostic action to take if Simulink software detects incorrect use of a
function-call subsystem.

Settings

Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• See the "Function-call subsystems" examples in the Simulink Subsystem Semantics
library for examples of invalid uses of function-call subsystems.

• Setting this parameter to none or warning can lead to invalid simulation results.
• Setting this parameter to none or warning may cause Simulink software to insert

extra delay operations.

Command-Line Information
Parameter: InvalidFcnCallConnMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

 Diagnostics Pane: Connectivity

1-339

See Also

• Diagnosing Simulation Errors
• Subsystem Semantics library
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-340

Context-dependent inputs

Select the diagnostic action to take when Simulink software has to compute any of a
function-call subsystem's inputs directly or indirectly during execution of a call to a
function-call subsystem.

Settings

Default: Enable all as errors

Enable all as errors

Enables this diagnostic for all function-call subsystems in this model. Issues an error
for context-dependent inputs.

Enable all as warnings

Enables this diagnostic for all function-call subsystems in this model. Issues a
warning for context-dependent inputs.

Use local settings

Issues a warning only if the corresponding diagnostic is selected on the function-call
subsystem's parameters dialog box (see the documentation for the Subsystem block's
parameter dialog box for more information).

Disable all

Disables this diagnostic for all function-call subsystems in this model.

Tips

• This situation occurs when executing a function-call subsystem can change its inputs.
• For examples of function-call subsystems, see the "Function-call systems" examples in

the Simulink "Subsystem Semantics" library).
• To fix an error or warning generated by this diagnostic, use one of these approaches:

• For the Inport block inside of the function-call subsystem, enable the Latch input
for feedback signals of function-call subsystem outputs parameter.

• Place a Function-Call Feedback Latch block on the feedback signal.

For examples of using these approaches, open the sl_subsys_fcncallerr12 model and
press the more info button.

Command-Line Information
Parameter: FcnCallInpInsideContextMsg

 Diagnostics Pane: Connectivity

1-341

Type: string
Value: 'EnableAllAsError'| 'EnableAllAsWarning'| 'UseLocalSettings' |
'DisableAll'

Default: 'EnableAllAsError'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Enable all as errors

See Also

• “Create a Function-Call Subsystem”
• “Pass fixed-size scalar root inputs by value for code generation” on page 1-523
• Subsystem Semantics library
• Subsystem block
• Diagnosing Simulation Errors
• Diagnostics Pane: Connectivity

1 Configuration Parameters Dialog Box

1-342

Diagnostics Pane: Compatibility

In this section...

“Compatibility Diagnostics Overview” on page 1-343
“S-function upgrades needed” on page 1-344
“Block behavior depends on frame status of signal” on page 1-345

 Diagnostics Pane: Compatibility

1-343

Compatibility Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an
incompatibility between the current version of Simulink software and the model.

Configuration

Set the parameters displayed.

Tips

• To open the Compatibility pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Compatibility.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Compatibility

1 Configuration Parameters Dialog Box

1-344

S-function upgrades needed

Select the diagnostic action to take if Simulink software encounters a block that has not
been upgraded to use features of the current release.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter:SFcnCompatibilityMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

• Diagnosing Simulation Errors
• Diagnostics Pane: Compatibility

 Diagnostics Pane: Compatibility

1-345

Block behavior depends on frame status of signal

Select the diagnostic action to take when Simulink software encounters a block whose
behavior depends on the frame status of a signal.

In future releases, frame status will no longer be a signal attribute. To prepare for this
change, many blocks received a new parameter. This parameter allows you to specify
whether the block treats its input as frames of data or as samples of data. Setting this
parameter prepares your model for future releases by moving control of sample- and
frame-based processing from the frame status of the signal to the block.

This diagnostic helps you identify whether any of the blocks in your model relies on the
frame status of a signal. By knowing this status, you can determine whether the block
performs sample- or frame-based processing. For more information, see the R2012a DSP
System Toolbox Release Notes section about frame-based processing.

Note: Frame-based processing requires a DSP System Toolbox license.

Settings

Default: warning

none

Simulink software takes no action.
warning

If your model contains any blocks whose behavior depends on the frame status of a
signal, Simulink software displays a warning.

error

If your model contains any blocks whose behavior depends on the frame status of a
signal, Simulink software terminates the simulation and displays an error message.

Tips

• Use the Upgrade Advisor to automatically update the blocks in your model. See
“Model Upgrades”.

Command-Line Information
Parameter: FrameProcessingCompatibilityMsg

1 Configuration Parameters Dialog Box

1-346

Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Sample- and Frame-Based Concepts”
• Diagnosing Simulation Errors
• Diagnostics Pane: Compatibility

 Diagnostics Pane: Model Referencing

1-347

Diagnostics Pane: Model Referencing

In this section...

“Model Referencing Diagnostics Overview” on page 1-348
“Model block version mismatch” on page 1-349
“Port and parameter mismatch” on page 1-351
“Invalid root Inport/Outport block connection” on page 1-353
“Unsupported data logging” on page 1-358

1 Configuration Parameters Dialog Box

1-348

Model Referencing Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an
incompatibility relating to a model reference hierarchy.

Configuration

Set the parameters displayed.

Tips

• To open the Diagnostics: Model Referencing pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Diagnostics > Model
Referencing.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Referencing Models
• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Saving Diagnostics
• Diagnostics Pane: Model Referencing

 Diagnostics Pane: Model Referencing

1-349

Model block version mismatch

Select the diagnostic action to take when loading or updating this model if Simulink
software detects a mismatch between the version of the model used to create or refresh a
Model block in this model and the referenced model's current version.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning and refreshes the Model block.
error

Simulink software displays an error message and does not refresh Model block.

Tip

If you have enabled display of referenced model version numbers on Model blocks for this
model (see Displaying Referenced Model Version Numbers), Simulink software displays a
version mismatch on the Model block icon, for example: Rev:1.0 != 1.2.

Command-Line Information
Parameter: ModelReferenceVersionMismatchMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none

See Also

• Referencing Models

1 Configuration Parameters Dialog Box

1-350

• Diagnosing Simulation Errors
• Displaying Referenced Model Version Numbers
• Diagnostics Pane: Model Referencing

 Diagnostics Pane: Model Referencing

1-351

Port and parameter mismatch

Select the diagnostic action to take if Simulink software detects a port or parameter
mismatch during model loading or updating.

Settings

Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning and refreshes the Model block.
error

Simulink software displays an error message and does not refresh the Model block.

Tips

• Port mismatches occur when there is a mismatch between the I/O ports of a Model
block and the root-level I/O ports of the model it references.

• Parameter mismatches occur when there is a mismatch between the parameter
arguments recognized by the Model block and the parameter arguments declared by
the referenced model.

• Model block icons can display a message indicating port or parameter mismatches.
To enable this feature, from the parent model's Simulink Editor, select Display >
Blocks > Block I/O Mismatch for Referenced Models.

Command-Line Information
Parameter: ModelReferenceIOMismatchMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-352

Application Setting

Efficiency No impact
Safety precaution error

See Also

• Referencing Models
• Diagnosing Simulation Errors
• Diagnostics Pane: Model Referencing

 Diagnostics Pane: Model Referencing

1-353

Invalid root Inport/Outport block connection

Select the diagnostic action to take if Simulink software detects invalid internal
connections to this model's root-level Output port blocks.

Settings

Default: none

none

Simulink software silently inserts hidden blocks to satisfy the constraints wherever
possible.

warning

Simulink software warns you that a connection constraint has been violated and
attempts to satisfy the constraint by inserting hidden blocks.

error

Simulink software terminates the simulation or code generation and displays an
error message.

Tips

• In some cases (such as function-call feedback loops), automatically inserted hidden
blocks may introduce delays and thus may change simulation results.

• Auto-inserting hidden blocks to eliminate root I/O problems stops at subsystem
boundaries. Therefore, you may need to manually modify models with subsystems
that violate any of the constraints below.

• The types of invalid internal connections are:

• A root Output port is connected directly or indirectly to more than one nonvirtual
block port:

1 Configuration Parameters Dialog Box

1-354

• A root Output port is connected to a Ground block:

• Two root Outport blocks are connected to the same block port:

• An Outport block is connected to some elements of a block output and not others:

 Diagnostics Pane: Model Referencing

1-355

• An Outport block is connected more than once to the same element:

• The signal driving the root outport is a test point:

• The output port has a constant sample time, but the driving block has a non-constant
sample time:

• The driving block has a constant sample time and multiple output ports, and one of
the other output ports of the block is a test point.

1 Configuration Parameters Dialog Box

1-356

• The root output port is conditionally computed, you are using Function Prototype
Control or a Encapsulated C++ target, and the Function Prototype specification or
C++ target specification states that the output variable corresponding to that root
outport is returned by value.

Command-Line Information
Parameter: ModelReferenceIOMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

 Diagnostics Pane: Model Referencing

1-357

Application Setting

Efficiency No impact
Safety precaution error

See Also

• Referencing Models
• Diagnosing Simulation Errors
• Diagnostics Pane: Model Referencing

1 Configuration Parameters Dialog Box

1-358

Unsupported data logging

Select the diagnostic action to take if this model contains To Workspace blocks or Scope
blocks with data logging enabled.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Tips

• The default action warns you that Simulink software does not support use of these
blocks to log data from referenced models.

• See “Models with Model Referencing: Overriding Signal Logging Settings” for
information on how to log signals from a reference to this model.

Command-Line Information
Parameter: ModelReferenceDataLoggingMessage
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

 Diagnostics Pane: Model Referencing

1-359

See Also

• Referencing Models
• Diagnosing Simulation Errors
• “Models with Model Referencing: Overriding Signal Logging Settings”
• To Workspace block
• Scope block
• Diagnostics Pane: Model Referencing

1 Configuration Parameters Dialog Box

1-360

Diagnostics Pane: Saving

In this section...

“Saving Tab Overview” on page 1-361
“Block diagram contains disabled library links” on page 1-362
“Block diagram contains parameterized library links” on page 1-364

 Diagnostics Pane: Saving

1-361

Saving Tab Overview

Specify the diagnostic actions that Simulink software takes when saving a block diagram
containing disabled library links or parameterized library links.

Configuration

Set the parameters displayed.

Tips

• To open the Saving pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Saving.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Saving a Model
• Model Parameters
• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Diagnostics Pane: Saving

1 Configuration Parameters Dialog Box

1-362

Block diagram contains disabled library links

Select the diagnostic action to take when saving a model containing disabled library
links.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram
may not contain the information you had intended.

error

Simulink software displays an error message. The model is not saved.

Tip

Use the Model Advisor Identify disabled library links check to find disabled
library links.

Command-Line Information
Parameter: SaveWithDisabledLinksMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Disabling Library Links

 Diagnostics Pane: Saving

1-363

• Identify disabled library links
• Saving a Model
• Model Parameters
• Diagnostics Pane: Saving

1 Configuration Parameters Dialog Box

1-364

Block diagram contains parameterized library links

Select the diagnostic action to take when saving a model containing parameterized
library links.

Settings

Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram
may not contain the in formation you had intended.

error

Simulink software displays an error message. The model is not saved.

Tips

• Use the Model Advisor Identify parameterized library links check to find
parameterized library links.

Command-Line Information
Parameter: SaveWithParameterizedLinksMsg
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'none'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Identify parameterized library links

 Diagnostics Pane: Saving

1-365

• Diagnostics Pane: Saving

1 Configuration Parameters Dialog Box

1-366

Diagnostics Pane: Stateflow

In this section...

“Stateflow Diagnostics Overview” on page 1-367
“Unused data, events and messages” on page 1-368
“Unexpected backtracking” on page 1-370
“Invalid input data access in chart initialization” on page 1-372
“No unconditional default transitions” on page 1-374
“Transition outside natural parent” on page 1-376
“Transition shadowing” on page 1-377
“Undirected event broadcasts” on page 1-378
“Transition action specified before condition action” on page 1-380
“Read-before-write to output in Moore chart” on page 1-382

 Diagnostics Pane: Stateflow

1-367

Stateflow Diagnostics Overview

Specify the diagnostic actions to take for detection of undesirable chart designs.

Configuration

Set the parameters displayed.

Tips

• To open the Stateflow pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Stateflow.

• The options are typically to do nothing or to display a warning or an error message.
• A warning does not terminate a simulation, but an error does.

See Also

• Saving a Model
• Model Parameters
• Diagnosing Simulation Errors
• Solver Diagnostics
• Sample Time Diagnostics
• Data Validity Diagnostics
• Type Conversion Diagnostics
• Connectivity Diagnostics
• Compatibility Diagnostics
• Model Referencing Diagnostics
• Saving Diagnostics

1 Configuration Parameters Dialog Box

1-368

Unused data, events and messages

Select the diagnostic action to take for detection of unused data, events, and messages
in a chart. Removing unused data, events, and messages can minimize the size of your
model.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears, with a link to delete the unused data, event, or message in your
chart.

error

An error appears and stops the simulation.

Tip

This diagnostic does not detect the following types of data and events:

• Machine-parented data
• Inputs and outputs of MATLAB functions
• Input events

Command-Line Information
Parameter: SFUnusedDataAndEventsDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact (for simulation)

none (for production code generation)

 Diagnostics Pane: Stateflow

1-369

Application Setting

Safety precaution warning

See Also

• Stateflow Diagnostics
• “Diagnostic for Detecting Unused Data”
• “Diagnostic for Detecting Unused Events”

1 Configuration Parameters Dialog Box

1-370

Unexpected backtracking

Select the diagnostic action to take when a chart junction has both of the following
conditions. The junction:

• Does not have an unconditional transition path to a state or a terminal junction
• Has multiple transition paths leading to it

This chart configuration can lead to undesired backtracking during simulation.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears, with a link to examples of undesired backtracking.
error

An error appears and stops the simulation.

Tip

To avoid undesired backtracking, consider adding an unconditional transition from the
chart junction to a terminal junction.

Command-Line Information
Parameter: SFUnexpectedBacktrackingDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact (for simulation)

No impact (for production code generation)

 Diagnostics Pane: Stateflow

1-371

Application Setting

Safety precaution error

See Also

• Stateflow Diagnostics
• “Best Practices for Creating Flow Charts”
• “Backtrack in Flow Charts”

1 Configuration Parameters Dialog Box

1-372

Invalid input data access in chart initialization

Select the diagnostic action to take when a chart:

• Has the ExecuteAtInitialization property set to true
• Accesses input data on a default transition or associated state entry actions, which

execute at chart initialization

In this chart configuration, blocks that connect to chart input ports might not initialize
their outputs during initialization. Use this diagnostic to locate this configuration in your
model and correct it.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Tip

In charts that do not contain states, the ExecuteAtInitialization property has no
effect.

Command-Line Information
Parameter: SFInvalidInputDataAccessInChartInitDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

 Diagnostics Pane: Stateflow

1-373

Application Setting

Efficiency No impact (for simulation)
No impact (for production code generation)

Safety precaution error

See Also

• Stateflow Diagnostics
• “Execution of a Chart at Initialization”

1 Configuration Parameters Dialog Box

1-374

No unconditional default transitions

Select the diagnostic action to take when a chart does not have an unconditional default
transition to a state or a junction.

This chart configuration can cause inconsistency errors. Use this diagnostic to locate this
configuration in your model and correct it. If a chart contains local event broadcasts or
implicit events, detection of a state inconsistency might not be possible until run time.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFNoUnconditionalDefaultTransitionDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact (for simulation)

none (for production code generation)
Safety precaution error

See Also

• Stateflow Diagnostics

 Diagnostics Pane: Stateflow

1-375

• “State Inconsistencies in a Chart”

1 Configuration Parameters Dialog Box

1-376

Transition outside natural parent

Select the diagnostic action to take when a chart contains a transition that loops outside
the parent state or junction.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFTransitionOutsideNaturalParentDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact (for simulation)

none (for production code generation)
Safety precaution error

See Also

• Stateflow Diagnostics

 Diagnostics Pane: Stateflow

1-377

Transition shadowing

Select the diagnostic action to take when a chart contains multiple unconditional
transitions that originate from the same state or junction.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFUnconditionalTransitionShadowingDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency No impact (for simulation)

none (for production code generation)
Safety precaution error

See Also

• Stateflow Diagnostics
• “Detection of Transition Shadowing”

1 Configuration Parameters Dialog Box

1-378

Undirected event broadcasts

Select the diagnostic action to take when a chart contains undirected local event
broadcasts.

Undirected local event broadcasts can cause unwanted recursive behavior in a chart and
inefficient code generation. Use this diagnostic to flag these types of event broadcasts and
fix them.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFUndirectedBroadcastEventsDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability No impact
Efficiency warning

Safety precaution error

See Also

• Stateflow Diagnostics
• “ Guidelines for Avoiding Unwanted Recursion in a Chart”

 Diagnostics Pane: Stateflow

1-379

• “ Broadcast Events to Synchronize States”

1 Configuration Parameters Dialog Box

1-380

Transition action specified before condition action

Select the diagnostic action to take when a transition action executes before a condition
action in a transition path with multiple transition segments.

When a transition with a specified transition action precedes a transition with a specified
condition action in the same transition path, out-of-order execution can occur. Use this
diagnostic to flag such behavior in your chart and fix it.

Settings

Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFTransitionActionBeforeConditionDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'warning'

Recommended Settings

Application Setting

Debugging warning

Traceability warning

Efficiency warning

Safety precaution warning

See Also

• Stateflow Diagnostics
• “Transition Action Types”

 Diagnostics Pane: Stateflow

1-381

• “Transitions”

1 Configuration Parameters Dialog Box

1-382

Read-before-write to output in Moore chart

Select the diagnostic action to take when a Moore chart uses a previous output value to
determine the current state. This behavior violates Moore machine semantics. In a Moore
machine, output is a function of current state only. Set this diagnostic to warning or
none to allow output values from the previous time step in calculating current state.

Settings

Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information
Parameter: SFOutputUsedAsStateInMooreChartDiag
Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency error

Safety precaution error

See Also

• Stateflow Diagnostics
• “Design Considerations for Moore Charts”

 Hardware Implementation Pane

1-383

Hardware Implementation Pane

In this section...

“Hardware Implementation Overview” on page 1-386
“Hardware board” on page 1-387
“Code Generation system target file” on page 1-389
“Device vendor” on page 1-390
“Device type” on page 1-392
“Device details” on page 1-404
“Number of bits: char” on page 1-405
“Number of bits: short” on page 1-407
“Number of bits: int” on page 1-409
“Number of bits: long” on page 1-411
“Number of bits: long long” on page 1-413
“Number of bits: float” on page 1-415
“Number of bits: double” on page 1-416

1 Configuration Parameters Dialog Box

1-384

In this section...

“Number of bits: native” on page 1-417
“Number of bits: pointer” on page 1-419
“Largest atomic size: integer” on page 1-420
“Largest atomic size: floating-point” on page 1-422
“Byte ordering” on page 1-424
“Signed integer division rounds to” on page 1-426
“Shift right on a signed integer as arithmetic shift” on page 1-428
“Support long long” on page 1-430
“Test hardware is the same as production hardware” on page 1-431
“Test device vendor and type” on page 1-433
“Device vendor” on page 1-445
“Device type” on page 1-447
“Number of bits: char” on page 1-459
“Number of bits: short” on page 1-461
“Number of bits: int” on page 1-463
“Number of bits: long” on page 1-465
“Number of bits: long long” on page 1-466
“Number of bits: float” on page 1-468
“Number of bits: double” on page 1-469
“Number of bits: native” on page 1-470
“Number of bits: pointer” on page 1-472
“Largest atomic size: integer” on page 1-473
“Largest atomic size: floating-point” on page 1-475
“Byte ordering” on page 1-477
“Signed integer division rounds to” on page 1-479
“Shift right on a signed integer as arithmetic shift” on page 1-481
“Support long long” on page 1-483
“Build action” on page 1-485
“Set host COM port” on page 1-486

 Hardware Implementation Pane

1-385

In this section...

“Analog input reference voltage” on page 1-487
“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate” on page
1-488
“SPI clock out frequency (in MHz)” on page 1-489

“Bit order” on page 1-491
“IP address (Ethernet shield)” on page 1-492
“MAC address” on page 1-493
“IP address (WiFi shield)” on page 1-494
“Service set identifier (SSID)” on page 1-495
“WiFi encryption” on page 1-496
“WEP key” on page 1-497
“WEP key index” on page 1-498
“WPA password” on page 1-499
“Communication interface” on page 1-500
“Verbose” on page 1-501

1 Configuration Parameters Dialog Box

1-386

Hardware Implementation Overview

Specify hardware options to simulate and generate code for models of computer-based
systems, such as embedded controllers.

Hardware Implementation pane parameters do not control hardware or compiler
behavior. The parameters describe hardware and compiler properties for the MATLAB
software.

• Specifying hardware characteristics enables simulation of the model to detect error
conditions that can arise when executing code, such as hardware overflow.

• MATLAB uses the information to generate code for the platform that runs as
efficiently as possible. MATLAB software also uses the information to give bit-true
agreement for the results of integer and fixed-point operations in simulation and
generated code.

See Also

• Configuring Hardware Properties
• Hardware Implementation Pane

 Hardware Implementation Pane

1-387

Hardware board

Select the hardware board upon which to run your model.

Changing this parameter updates the dialog box display so that it displays parameters
that are relevant to your hardware board.

To install support for a hardware board, start the Support Package Installer by selecting
Get Hardware Support Packages. Alternatively, in the MATLAB Command
Window, enter supportPackageInstaller.

After installing support for a hardware board, reopen the Configuration Parameters
dialog box and select the hardware board.

Settings

Default: None if the specified system target file is ert.tlc, realtime.tlc, or
autosar.tlc. Otherwise, the default is Determine by Code Generation system
target file.

None

No hardware board is specified. The system target file specified for the model is
ert.tlc, realtime.tlc, or autosar.tlc.

Determine by Code Generation system target file

Specifies that the system target file setting determines the hardware board.
Get Hardware Support Packages

Invokes the Support Package Installer. After you install a hardware support package,
the list includes relevant hardware board names.

Hardware board name
Specifies the hardware board to use to implement the system this model represents.

Tips

• When you select a hardware board, parameters for board settings appear in the dialog
box display.

• After you select a hardware board, you can select a device vendor and type.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

1 Configuration Parameters Dialog Box

1-388

Command-Line Information

Not available

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Device type
• Device vendor
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-389

Code Generation system target file

System target file that you select on the Code Generation pane.

1 Configuration Parameters Dialog Box

1-390

Device vendor

Select the manufacturer of the hardware board to use to implement the system that this
model represents.

Settings

Default: Intel

If you have installed target support packages, the list of settings can include additional
manufacturers.

• AMD

• ARM Compatible

• Altera

• Analog Devices

• Atmel

• Freescale

• Infineon

• Intel

• Microchip

• NXP

• Renesas

• STMicroelectronics

• Texas Instruments

• ASIC/FPGA

• Custom Processor

Tips

• The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate
the device vendor and device type values by using the characters ->. For example:
'Intel->x86-64 (Linux 64)'.

• If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

 Hardware Implementation Pane

1-391

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Command-Line Information
Parameter: ProdHWDeviceType
Type: string
Value: any valid value (see tips)
Default: 'Intel'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware board
• Device type
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-392

Device type

Select the type of hardware to use to implement the system that this model represents.

Settings

Default: x86–64 (Windows64)

If you have installed target support packages, the list of settings includes additional
types of hardware.

AMD® options:

• Athlon 64

• K5/K6/Athlon

• x86–32 (Windows 32)

• x86–64 (Linux 64)

• x86–64 (Mac OS X)

• x86–64 (Windows64)

ARM® options:

• ARM 10

• ARM 11

• ARM 7

• ARM 8

• ARM 9

• ARM Cortex

Altera® options:

• SoC (ARM CortexA)

Analog Devices™ options:

• ADSP–CM40x (ARM Cortex-M)

• Blackfin

• SHARC

• TigerSHARC

 Hardware Implementation Pane

1-393

Atmel® options:

• AVR

• AVR (32-bit)

• AVR (8-bit)

Freescale™ options:

• 32-bit PowerPC

• 68332

• 68HC08

• 68HC11

• ColdFire

• DSP563xx (16-bit mode)

• HC(S)12

• MPC52xx

• MPC5500

• MPC55xx

• MPC5xx

• MPC7xxx

• MPC82xx

• MPC83xx

• MPC85xx

• MPC86xx

• MPC8xx

• RS08

• S08

• S12x

• StarCore

Infineon® options:

• C16x, XC16x

• TriCore

1 Configuration Parameters Dialog Box

1-394

Intel® options:

• x86–32 (Windows32)

• x86–64 (Linux 64

• x86–64 (Mac OS X

• x86–64 (Windows64

Microchip options:

• PIC18

• dsPIC

NXP options:

• Cortex—M0/M0+

• Cortex—M3

• Cortex—M4

Renesas® options:

• M16C

• M32C

• R8C/Tiny

• SH-2/3/4

• V850

STMicroelectronics®:

• ST10/Super10

Texas Instruments™ options:

• C2000

• C5000

• C6000

• MSP430

• Stellaris Cortex—M3

• TMS470

 Hardware Implementation Pane

1-395

• TMS570 Cortex—R4

ASIC/FPGA options:

• ASIC/FPGA

Tips

• Before you specify the device type, select the device vendor.
• To view parameters for a device type, click the arrow button to the left of Device

details.
• Selecting a device type specifies the hardware device to define system constraints:

• Default hardware properties appear as the initial values.
• You cannot change parameters with only one possible value.
• Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

AMD

Athlon 64 8 16 32 64 64 64 64 Char None Little
Endian

Zero ✓ □

K5/K6/

Athlon

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

x86–32

(Windows32)

8 16 32 32 64 32 32 Char Float Little
Endian

Zero ✓ □

x86–64

(Linux 64)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

1 Configuration Parameters Dialog Box

1-396

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

x86–64 (Mac

OS X)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–64

(Windows64)

8 16 32 32 64 64 64 Char Float Little
Endian

Zero ✓ □

ARM Compatible

ARM

7/8/9/10

8 16 32 32 64 32 32 Long Float Little
Endian

Zero ✓ □

ARM 11 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

ARM Cortex 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Altera

SoC (ARM

Cortex A)

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Analog Devices

ADSP-

CM40x(ARM

Cortex-M)

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Blackfin 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

SHARC 32 32 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

TigerSHARC 32 32 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

 Hardware Implementation Pane

1-397

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

Atmel

AVR 8 16 16 32 64 8 16 Char None Little
Endian

Zero ✓ □

AVR (32-

bit)

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

AVR (8-bit) 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Freescale

32-bit

PowerPC

8 16 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

68332 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

68HC08 8 16 16 32 64 8 8 Char None Big
Endian

Zero ✓ □

68HC11 8 16 16 32 64 8 8 Char None Big
Endian

Zero ✓ □

ColdFire 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

DSP563xx

(16-bit

mode)

8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

DSP5685x 8 16 16 32 64 16 16 Char Float Little
Endian

Zero ✓ □

1 Configuration Parameters Dialog Box

1-398

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

HC(S)12 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

MPC52xx,

MPC5500,

MPC55xx,

MPC5xx,

PC5xx,

MPC7xxx,

MPC82xx,

MPC83xx,

MPC86xx,

MPC8xx

8 16 32 32 64 32 32 Long None Big
Endian

Zero ✓ □

MPC85xx 8 16 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

RS08 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

S08 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

S12x 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

StarCore 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Infineon

C16x, XC16x 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

 Hardware Implementation Pane

1-399

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

TriCore 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Intel

x86–32

(Windows32)

8 16 32 32 64 32 32 Char Float Little
Endian

Zero ✓ □

x86–64

(Linux 64)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–32 (Mac

OS X)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–32

(Windows64)

8 16 32 32 64 64 64 Char Float Little
Endian

Zero ✓ □

Microchip

PIC18 8 16 16 32 64 8 8 Char None Little
Endian

Zero ✓ □

dsPIC 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

NXP

Cortex—M0/

M0+

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Cortex—M3 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Cortex—M4 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Renesas

1 Configuration Parameters Dialog Box

1-400

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

M16C 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

M32C 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

R8C/Tiny 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

SH-2/3/4 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

V850 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

STMicroelectronics

ST10/

Super10

8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Texas Instruments

C2000 16 16 16 32 64 16 32 Int None Little
Endian

Zero ✓ □

C5000 16 16 16 32 64 16 16 Int None Big
Endian

Zero ✓ □

C6000 8 16 32 40 64 32 32 Int None Little
Endian

Zero ✓ □

MSP430 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Stellaris

Cortex—M3

8 16 32 32 6 32 32 Long Double Little
Endian

Zero ✓ □

 Hardware Implementation Pane

1-401

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

TMS470 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

TMS570

Cortex—R4

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

ASIC/FPGA

ASIC/FPGA NA NA NA NA NA NA NA NA NA NA NA NA NA

• The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate
the device vendor and device type values by using the characters ->. For example:
'Intel->x86-64 (Linux 64)'.

• If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Menu options that are available in the menu depend on the Device vendor parameter
setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

• Number of bits: char
• Number of bits: short
• Number of bits: int

1 Configuration Parameters Dialog Box

1-402

• Number of bits: long
• Number of bits: long long
• Number of bits: float
• Number of bits: double
• Number of bits: native
• Number of bits: pointer
• Largest atomic size: integer
• Largest atomic size: floating-point
• Byte ordering
• Signed integer division rounds to
• Shift right on a signed integer as arithmetic shift
• Support long long

Whether you can modify the setting of a device-specific parameter varies according to
device type.

Command-Line Information
Parameter: ProdHWDeviceType
Type: string
Value: any valid value (see tips)
Default: 'Intel->x86–64 (Windows64)'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware board
• Device vendor
• Hardware Implementation Options

 Hardware Implementation Pane

1-403

• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-404

Device details

Click the arrow to list parameters for:

• Data type bit specifications
• Largest atomic sizes for integer and floating-point values
• Byte ordering
• What signed integer division rounds to
• Whether signed integer as an arithmetic shift shifts right
• Whether there is support for the long long data type

 Hardware Implementation Pane

1-405

Number of bits: char

Describe the character bit length for the hardware.

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerChar
Type: integer
Value: any valid value
Default: 8

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-406

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-407

Number of bits: short

Describe the data bit length for the hardware.

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerShort
Type: integer
Value: any valid value
Default: 16

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-408

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-409

Number of bits: int

Describe the data integer bit length for the hardware.

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerInt
Type: integer
Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-410

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-411

Number of bits: long

Describe the data bit lengths for the hardware.

Settings

Default: 32

Minimum: 32

Maximum: 128

Enter a value from 32 through 128.

Tip

All values must be a multiple of 8 and from 32 through 128.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLong
Type: integer
Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-412

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-413

Number of bits: long long

Describe the length in bits of the C long long data type that the hardware supports.

Settings

Default: 64

Minimum: 64

Maximum: 128

The number of bits that represent the C long long data type.

Tips

• Use the C long long data type only if your C compiler supports long long.
• You can change the value of this parameter for custom targets only. For custom

targets, all values must be a multiple of 8 and be between 64 and 128.

Dependencies

• Enable long long enables use of this parameter.
• The value of this parameter must be greater than or equal to the value of Number of

bits: long.
• Selecting a device by using the Device vendor and Device type parameters sets a

device-specific value for this parameter.
• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLongLong
Type: integer
Value: any valid value
Default: 64

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-414

Application Setting

Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• “Support long long” on page 1-430
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-415

Number of bits: float

Describe the bit length of floating-point data for the hardware (read only).

Settings

Default: 32

Always equals 32.

Command-Line Information
Parameter: ProdBitPerFloat
Type: integer
Value: 32 (read-only)
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-416

Number of bits: double

Describe the bit-length of double data for the hardware (read only).

Settings

Default: 64

Always equals 64.

Command-Line Information
Parameter: ProdBitPerDouble
Type: integer
Value: 64 (read only)
Default: 64

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-417

Number of bits: native

Describe the microprocessor native word size for the hardware.

Settings

Default: 64

Minimum: 8

Maximum: 64

Enter a value from 8 through 64.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdWordSize
Type: integer
Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and for code
generation.

1 Configuration Parameters Dialog Box

1-418

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-419

Number of bits: pointer

Describe the bit-length of pointer data for the hardware.

Settings

Default: 64

Minimum: 8

Maximum: 64

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerPointer
Type: integer
Value: any valid value
Default: 64

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-420

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the
hardware.

Settings

Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and
stored on the hardware.

Short

Specifies that short is the largest integer data type that can be atomically loaded
and stored on the hardware.

Int

Specifies that int is the largest integer data type that can be atomically loaded and
stored on the hardware.

Long

Specifies that long is the largest integer data type that can be atomically loaded and
stored on the hardware.

LongLong

Specifies that long long is the largest integer data type that can be atomically
loaded and stored on the hardware.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.
• You can set this parameter to LongLong only if the hardware supports the C long

long data type and you have selected Enable long long.

 Hardware Implementation Pane

1-421

Command-Line Information
Parameter: ProdLargestAtomicInteger
Type: string
Value: 'Char' | 'Short' | 'Int' | 'Long' | 'LongLong'
Default: 'Char'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-422

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on
the hardware.

Settings

Default: Float

Float

Specifies that float is the largest floating-point data type that can be atomically
loaded and stored on the hardware.

Double

Specifies that double is the largest floating-point data type that can be atomically
loaded and stored on the hardware.

None

Specifies that there is no applicable setting or not to use this parameter in generating
multirate code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdLargestAtomicFloat
Type: string
Value: 'Float' | 'Double' | 'None'
Default: 'Float'

Recommended Settings

Application Setting

Debugging No impact

 Hardware Implementation Pane

1-423

Application Setting

Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-424

Byte ordering

Describe the byte ordering for the hardware board.

Settings

Default: Little Endian

Unspecified

Specifies that the code determines the endianness of the hardware. This choice is the
least efficient.

Big Endian

The most significant byte appears first in the byte ordering.
Little Endian

The least significant byte appears first in the byte ordering.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdEndianess
Type: string
Value: 'Unspecified' | 'LittleEndian' | 'BigEndian'
Default: 'Little Endian'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options

 Hardware Implementation Pane

1-425

• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-426

Signed integer division rounds to

Describe how your compiler for the hardware rounds the result of dividing two signed
integers.

Settings

Default: Zero

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if
that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer
to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer
to negative infinity.

Tips

• To simulate rounding behavior of the C compiler that you use to compile generated
code, use the Integer rounding mode parameter for blocks. This setting appears on
the Signal Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

• For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Rounding”.

• For more information on how this parameter affects code generation, see Hardware
Implementation Options.

• This table lists the compiler behavior described by the options for this parameter.

N D Ideal N/D Zero Floor Undefined

33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9

 Hardware Implementation Pane

1-427

N D Ideal N/D Zero Floor Undefined

-33 -4 8.25 8 8 8 or 9

Dependency

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdIntDivRoundTo
Type: string
Value: 'Floor' | 'Zero' | 'Undefined'
Default: 'Zero'

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No impact for simulation or during development.
Floor for production code generation.

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-428

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the hardware fills the sign bit in a right shift of a signed
integer.

Settings

Default: On

 On
Generates simple, efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

 Off
Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips

• Select this parameter if the C compiler implements a signed integer right shift as an
arithmetic right shift.

• An arithmetic right shift fills bits vacated by the right shift with the value of the
most significant bit. The most significant bit indicates the sign of the number in twos
complement notation.

Dependency

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdShiftRightIntArith
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended settings

Application Setting

Debugging No impact

 Hardware Implementation Pane

1-429

Application Setting

Traceability No impact
Efficiency On
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-430

Support long long

Specify that your C compiler supports the C long long data type. Most C99 compilers
support long long.

Settings

Default: Off

 On
Enables use of C long long data type for simulation and code generation on the
hardware.

 Off
Disables use of C long long data type for simulation or code generation on the
hardware.

Tips

• This parameter is enabled only if the selected hardware supports the C long long
data type.

• If your compiler does not support C long long, do not select this parameter.

Dependencies

This parameter enables Number of bits: long long.

Command-Line Information
Parameter: ProdLongLongMode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific

 Hardware Implementation Pane

1-431

Application Setting

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

• “Number of bits: long long” on page 1-413
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

Test hardware is the same as production hardware

Specify whether the test hardware differs from the production hardware.

Settings

Default: On

On
String that specifies that the hardware used to test the code generated from the
model is the same as the production hardware, or has the same characteristics.

Off
String that specifies that the hardware used to test the code generated from the
model has different characteristics than the production hardware.

Tip

You can generate code that runs on the test hardware but behaves as if it had been
generated for and executed on the deployment hardware.

Dependency

Enables test hardware parameters.

Recommended settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-432

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-433

Test device vendor and type

Select the manufacturer and type of the hardware to use to test the code generated from
the model.

Settings

Default: Intel, x86–64 (Windows64)

• AMD

• ARM Compatible

• Altera

• Analog Devices

• Atmel

• Freescale

• Infineon

• Intel

• Microchip

• NXP

• Renesas

• STMicroelectronics

• Texas Instruments

• ASIC/FPGA

• Custom Processor

AMD options:

• Athlon 64

• K5/K6/Athlon

• x86–32 (Windows 32)

• x86–64 (Linux 64)

• x86–64 (Mac OS X)

• x86–64 (Windows64)

1 Configuration Parameters Dialog Box

1-434

ARM options:

• ARM 10

• ARM 11

• ARM 7

• ARM 8

• ARM 9

• ARM Cortex

Altera options:

• SoC (ARM CortexA)

Analog Devices options:

• ADSP–CM40x (ARM Cortex-M)

• Blackfin

• SHARC

• TigerSHARC

Atmel options:

• AVR

• AVR (32-bit)

• AVR (8-bit)

Freescale options:

• 32-bit PowerPC

• 68332

• 68HC08

• 68HC11

• ColdFire

• DSP563xx (16-bit mode)

• HC(S)12

• MPC52xx

 Hardware Implementation Pane

1-435

• MPC5500

• MPC55xx

• MPC5xx

• MPC7xxx

• MPC82xx

• MPC83xx

• MPC85xx

• MPC86xx

• MPC8xx

• RS08

• S08

• S12x

• StarCore

Infineon options:

• C16x, XC16x

• TriCore

Intel options:

• x86–32 (Windows32)

• x86–64 (Linux 64

• x86–64 (Mac OS X

• x86–64 (Windows64

Microchip options:

• PIC18

• dsPIC

NXP options:

• Cortex—M0/M0+

• Cortex—M3

1 Configuration Parameters Dialog Box

1-436

• Cortex—M4

Renesas options:

• M16C

• M32C

• R8C/Tiny

• SH-2/3/4

• V850

STMicroelectronics:

• ST10/Super10

Texas Instruments options:

• C2000

• C5000

• C6000

• MSP430

• Stellaris Cortex—M3

• TMS470

• TMS570 Cortex—R4

ASIC/FPGA options:

• ASIC/FPGA

Tips

• Before you select the device type, select the device vendor.
• Selecting a device type specifies the hardware device to define system constraints:

• Default hardware properties appear as the initial values.
• You cannot change parameters with only one possible value.
• Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

 Hardware Implementation Pane

1-437

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

AMD

Athlon 64 8 16 32 64 64 64 64 Char None Little
Endian

Zero ✓ □

K5/K6/

Athlon

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

x86–32

(Windows32)

8 16 32 32 64 32 32 Char Float Little
Endian

Zero ✓ □

x86–64

(Linux 64)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–64 (Mac

OS X)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–64

(Windows64)

8 16 32 32 64 64 64 Char Float Little
Endian

Zero ✓ □

ARM Compatible

ARM

7/8/9/10

8 16 32 32 64 32 32 Long Float Little
Endian

Zero ✓ □

ARM 11 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

ARM Cortex 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Altera

SoC (ARM

Cortex A)

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

1 Configuration Parameters Dialog Box

1-438

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

Analog Devices

ADSP-

CM40x(ARM

Cortex-M)

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Blackfin 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

SHARC 32 32 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

TigerSHARC 32 32 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Atmel

AVR 8 16 16 32 64 8 16 Char None Little
Endian

Zero ✓ □

AVR (32-

bit)

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

AVR (8-bit) 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Freescale

32-bit

PowerPC

8 16 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

68332 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

68HC08 8 16 16 32 64 8 8 Char None Big
Endian

Zero ✓ □

 Hardware Implementation Pane

1-439

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

68HC11 8 16 16 32 64 8 8 Char None Big
Endian

Zero ✓ □

ColdFire 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

DSP563xx

(16-bit

mode)

8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

DSP5685x 8 16 16 32 64 16 16 Char Float Little
Endian

Zero ✓ □

HC(S)12 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

MPC52xx,

MPC5500,

MPC55xx,

MPC5xx,

PC5xx,

MPC7xxx,

MPC82xx,

MPC83xx,

MPC86xx,

MPC8xx

8 16 32 32 64 32 32 Long None Big
Endian

Zero ✓ □

MPC85xx 8 16 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

RS08 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

1 Configuration Parameters Dialog Box

1-440

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

S08 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

S12x 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

StarCore 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Infineon

C16x, XC16x 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

TriCore 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Intel

x86–32

(Windows32)

8 16 32 32 64 32 32 Char Float Little
Endian

Zero ✓ □

x86–64

(Linux 64)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–32 (Mac

OS X)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–32

(Windows64)

8 16 32 32 64 64 64 Char Float Little
Endian

Zero ✓ □

Microchip

PIC18 8 16 16 32 64 8 8 Char None Little
Endian

Zero ✓ □

 Hardware Implementation Pane

1-441

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

dsPIC 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

NXP

Cortex—M0/

M0+

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Cortex—M3 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Cortex—M4 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Renesas

M16C 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

M32C 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

R8C/Tiny 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

SH-2/3/4 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

V850 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

STMicroelectronics

ST10/

Super10

8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Texas Instruments

1 Configuration Parameters Dialog Box

1-442

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

C2000 16 16 16 32 64 16 32 Int None Little
Endian

Zero ✓ □

C5000 16 16 16 32 64 16 16 Int None Big
Endian

Zero ✓ □

C6000 8 16 32 40 64 32 32 Int None Little
Endian

Zero ✓ □

MSP430 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Stellaris

Cortex—M3

8 16 32 32 6 32 32 Long Double Little
Endian

Zero ✓ □

TMS470 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

TMS570

Cortex—R4

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

ASIC/FPGA

ASIC/FPGA NA NA NA NA NA NA NA NA NA NA NA NA NA

• If your hardware does not match one of the listed types, select Custom.
• The Device vendor and Device type fields share the command-line parameter

TargetHWDeviceType. When specifying this parameter at the command line,
separate the device vendor and device type values by using the characters ->. For
example: 'Intel->x86-64 (Linux 64)'.

• If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

 Hardware Implementation Pane

1-443

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Menu options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

• Number of bits: char
• Number of bits: short
• Number of bits: int
• Number of bits: long
• Number of bits: long long
• Number of bits: float
• Number of bits: double
• Number of bits: native
• Number of bits: pointer
• Largest atomic size: integer
• Largest atomic size: floating-point
• Byte ordering
• Signed integer division rounds to
• Shift right on a signed integer as arithmetic shift
• Support long long

Whether you can modify the value of a device-specific parameter varies according to
device type.

Command-Line Information
Parameter: TargetHWDeviceType
Type: string
Value: any valid value (see tips)
Default:'Intel->x86–64 (Windows64)'

1 Configuration Parameters Dialog Box

1-444

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware board
• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-445

Device vendor

Select the manufacturer of the hardware board to use to implement the test system that
this model represents.

Settings

Default: Intel

• AMD

• ARM Compatible

• Altera

• Analog Devices

• Atmel

• Freescale

• Infineon

• Intel

• Microchip

• NXP

• Renesas

• STMicroelectronics

• Texas Instruments

• ASIC/FPGA

• Custom Processor

Tips

• The Device vendor and Device type fields share the command-line parameter
TargetHWDeviceType. When specifying this parameter from the command line,
separate the device vendor and device type values by using the characters ->. For
example: 'Intel->x86-64 (Linux 64)'.

• If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

1 Configuration Parameters Dialog Box

1-446

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Command-Line Information
Parameter: TargetHWDeviceType_Vendor
Type: string
Value: any valid value (see tips)
Default: 'Intel'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware board
• Device type
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-447

Device type

Select the type of hardware to use to implement the test system.

Settings

Default: x86–64 (Windows64)

AMD options:

• Athlon 64

• K5/K6/Athlon

• x86–32 (Windows 32)

• x86–64 (Linux 64)

• x86–64 (Mac OS X)

• x86–64 (Windows64)

ARM options:

• ARM 10

• ARM 11

• ARM 7

• ARM 8

• ARM 9

• ARM Cortex

Altera options:

• SoC (ARM CortexA)

Analog Devices options:

• ADSP–CM40x (ARM Cortex-M)

• Blackfin

• SHARC

• TigerSHARC

Atmel options:

• AVR

1 Configuration Parameters Dialog Box

1-448

• AVR (32-bit)

• AVR (8-bit)

Freescale options:

• 32-bit PowerPC

• 68332

• 68HC08

• 68HC11

• ColdFire

• DSP563xx (16-bit mode)

• HC(S)12

• MPC52xx

• MPC5500

• MPC55xx

• MPC5xx

• MPC7xxx

• MPC82xx

• MPC83xx

• MPC85xx

• MPC86xx

• MPC8xx

• RS08

• S08

• S12x

• StarCore

Infineon options:

• C16x, XC16x

• TriCore

Intel options:

• x86–32 (Windows32)

 Hardware Implementation Pane

1-449

• x86–64 (Linux 64

• x86–64 (Mac OS X

• x86–64 (Windows64

Microchip options:

• PIC18

• dsPIC

NXP options:

• Cortex—M0/M0+

• Cortex—M3

• Cortex—M4

Renesas options:

• M16C

• M32C

• R8C/Tiny

• SH-2/3/4

• V850

STMicroelectronics:

• ST10/Super10

Texas Instruments options:

• C2000

• C5000

• C6000

• MSP430

• Stellaris Cortex—M3

• TMS470

• TMS570 Cortex—R4

ASIC/FPGA options:

• ASIC/FPGA

1 Configuration Parameters Dialog Box

1-450

Tips

• Before you specify the device type, select the device vendor.
• Selecting a device type specifies the hardware device to define system constraints:

• Default hardware properties appear in the dialog box display as the initial values.
• You cannot change parameters with only one possible value.
• Parameters with more than one possible value provide a list of valid values.

This table lists values for each device type.

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

AMD

Athlon 64 8 16 32 64 64 64 64 Char None Little
Endian

Zero ✓ □

K5/K6/

Athlon

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

x86–32

(Windows32)

8 16 32 32 64 32 32 Char Float Little
Endian

Zero ✓ □

x86–64

(Linux 64)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–64 (Mac

OS X)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–64

(Windows64)

8 16 32 32 64 64 64 Char Float Little
Endian

Zero ✓ □

ARM Compatible

 Hardware Implementation Pane

1-451

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

ARM

7/8/9/10

8 16 32 32 64 32 32 Long Float Little
Endian

Zero ✓ □

ARM 11 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

ARM Cortex 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Altera

SoC (ARM

Cortex A)

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Analog Devices

ADSP-

CM40x(ARM

Cortex-M)

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Blackfin 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

SHARC 32 32 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

TigerSHARC 32 32 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Atmel

AVR 8 16 16 32 64 8 16 Char None Little
Endian

Zero ✓ □

AVR (32-

bit)

8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

1 Configuration Parameters Dialog Box

1-452

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

AVR (8-bit) 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Freescale

32-bit

PowerPC

8 16 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

68332 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

68HC08 8 16 16 32 64 8 8 Char None Big
Endian

Zero ✓ □

68HC11 8 16 16 32 64 8 8 Char None Big
Endian

Zero ✓ □

ColdFire 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

DSP563xx

(16-bit

mode)

8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

DSP5685x 8 16 16 32 64 16 16 Char Float Little
Endian

Zero ✓ □

HC(S)12 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

 Hardware Implementation Pane

1-453

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

MPC52xx,

MPC5500,

MPC55xx,

MPC5xx,

PC5xx,

MPC7xxx,

MPC82xx,

MPC83xx,

MPC86xx,

MPC8xx

8 16 32 32 64 32 32 Long None Big
Endian

Zero ✓ □

MPC85xx 8 16 32 32 64 32 32 Long Double Big
Endian

Zero ✓ □

RS08 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

S08 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

S12x 8 16 16 32 64 16 16 Char None Big
Endian

Zero ✓ □

StarCore 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Infineon

C16x, XC16x 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

TriCore 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

Intel

1 Configuration Parameters Dialog Box

1-454

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

x86–32

(Windows32)

8 16 32 32 64 32 32 Char Float Little
Endian

Zero ✓ □

x86–64

(Linux 64)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–32 (Mac

OS X)

8 16 32 64 64 64 64 Char Float Little
Endian

Zero ✓ □

x86–32

(Windows64)

8 16 32 32 64 64 64 Char Float Little
Endian

Zero ✓ □

Microchip

PIC18 8 16 16 32 64 8 8 Char None Little
Endian

Zero ✓ □

dsPIC 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

NXP

Cortex—M0/

M0+

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Cortex—M3 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Cortex—M4 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

Renesas

M16C 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

 Hardware Implementation Pane

1-455

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

M32C 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

R8C/Tiny 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

SH-2/3/4 8 16 32 32 64 32 32 Char None Big
Endian

Zero ✓ □

V850 8 16 32 32 64 32 32 Char None Little
Endian

Zero ✓ □

STMicroelectronics

ST10/

Super10

8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Texas Instruments

C2000 16 16 16 32 64 16 32 Int None Little
Endian

Zero ✓ □

C5000 16 16 16 32 64 16 16 Int None Big
Endian

Zero ✓ □

C6000 8 16 32 40 64 32 32 Int None Little
Endian

Zero ✓ □

MSP430 8 16 16 32 64 16 16 Char None Little
Endian

Zero ✓ □

Stellaris

Cortex—M3

8 16 32 32 6 32 32 Long Double Little
Endian

Zero ✓ □

TMS470 8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

1 Configuration Parameters Dialog Box

1-456

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Key:

Long long = Support long long

Number of bits Largest
atomic size

Device vendor /
Device type

char short int long long
long

native pointer int float

Byte
ordering

Round
to

Shift
right

Long
long

TMS570

Cortex—R4

8 16 32 32 64 32 32 Long Double Little
Endian

Zero ✓ □

ASIC/FPGA

ASIC/FPGA NA NA NA NA NA NA NA NA NA NA NA NA NA

• The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter atth e command line, separate
the device vendor and device type values by using the characters ->. For example:
'Intel->x86-64 (Linux 64)'.

• If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

• Number of bits: char
• Number of bits: short
• Number of bits: int
• Number of bits: long
• Number of bits: long long

 Hardware Implementation Pane

1-457

• Number of bits: float
• Number of bits: double
• Number of bits: native
• Number of bits: pointer
• Largest atomic size: integer
• Largest atomic size: floating-point
• Byte ordering
• Signed integer division rounds to
• Shift right on a signed integer as arithmetic shift
• Support long long

Whether you can modify the value of a device-specific parameter varies according to the
device type.

Command-Line Information
Parameter: TargetHWDeviceType_Type
Type: string
Value: any valid value (see tips)
Default: 'Intel->x86–64 (Windows64)'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware board
• Device vendor
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-458

 Hardware Implementation Pane

1-459

Number of bits: char

Describe the character bit length for the hardware that you use to test code.

Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerChar
Type: integer
Value: any valid value
Default: 8

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-460

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-461

Number of bits: short

Describe the data bit length for the hardware that you use to test code.

Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerShort
Type: integer
Value: any valid value
Default: 16

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-462

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-463

Number of bits: int

Describe the data integer bit length of the hardware that you use to test code.

Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerInt
Type: integer
Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-464

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-465

Number of bits: long

Describe the data bit lengths for the hardware that you use to test code.

Settings

Default: 32

Minimum: 32

Maximum: 64

Enter a value between 32 and 64. (The value 64 is selected by default if you run
MATLAB software on a 64-bit host computer and select the MATLAB host as the
test hardware — that is, TargetHWDeviceType equals 'Generic->MATLAB Host
Computer'.)

Tip

All values must be a multiple of 8 and between 32 and 64.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLong
Type: integer
Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific

1 Configuration Parameters Dialog Box

1-466

Application Setting

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the test hardware
supports.

Settings

Default: 64

Minimum: 64

Maximum: 128

The number of bits that represent the C long long data type.

Tips

• Use the long long data type only if your C compiler supports long long.
• You can change the value for custom targets only. For custom targets, all values must

be a multiple of 8 and between 64 and 128.

Dependencies

• Enable long long enables use of this parameter.
• Selecting a device by using the Device vendor and Device type parameters sets a

device-specific value for this parameter.
• The value of this parameter must be greater than or equal to the value of Number of

bits: long.

 Hardware Implementation Pane

1-467

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLongLong
Type: integer
Value: any valid value
Default: 64

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• “Support long long” on page 1-483
• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-468

Number of bits: float

Describe the bit length of floating-point data for the hardware that you use to test code
(read only).

Settings

Default: 32

Always equals 32.

Command-Line Information
Parameter: TargetBitPerFloat
Type: integer
Value: 32 (read-only)
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-469

Number of bits: double

Describe the bit-length of double data for the hardware that you use to test code (read
only).

Settings

Default: 64

Always equals 64.

Command-Line Information
Parameter: TargetBitPerDouble
Type: integer
Value: 64 (read only)
Default: 64

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-470

Number of bits: native

Describe the microprocessor native word size for the hardware that you use to test code.

Settings

Default: 32

Minimum: 8

Maximum: 64

Enter a value between 8 and 64. (The value 64 is selected by default if you run MATLAB
software on a 64-bit host computer and select the MATLAB host as the test hardware —
that is, TargetHWDeviceType equals 'Generic->MATLAB Host Computer'.)

Tip

All values must be a multiple of 8.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetWordSize
Type: integer
Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

 Hardware Implementation Pane

1-471

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

1 Configuration Parameters Dialog Box

1-472

Number of bits: pointer

Describe the bit-length of pointer data for the hardware that you use to test code.

Settings

Default: Device-specific value (see Dependencies)

Minimum: 8

Maximum: 64

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerPointer
Type: integer
Value: any valid value
Default: device dependent

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-473

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the
hardware that you use to test code.

Settings

Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Short

Specifies that short is the largest integer data type that can be atomically loaded
and stored on the hardware that you use to test code.

Int

Specifies that int is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Long

Specifies that long is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

LongLong

Specifies that long long is the largest integer data type that can be atomically
loaded and stored on the hardware that you use to test code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.
• You can set this parameter to LongLong only if the hardware used to test the code

supports the C long long data type and you have selected Enable long long.

1 Configuration Parameters Dialog Box

1-474

Command-Line Information
Parameter: TargetLargestAtomicInteger
Type: string
Value: 'Char' | 'Short' | 'Int' | 'Long' | 'LongLong'
Default: 'Char'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane
• “Support long long” on page 1-483

 Hardware Implementation Pane

1-475

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on
the hardware that you use to test code.

Settings

Default: None

Float

Specifies that float is the largest floating-point data type that can be atomically
loaded and stored on the hardware that you use to test code.

Double

Specifies that double is the largest floating-point data type that can be atomically
loaded and stored on the hardware that you use to test code.

None

Specifies that there is no applicable setting or not to use this parameter in generating
multirate code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetLargestAtomicFloat
Type: string
Value: 'Float' | 'Double' | 'None'
Default: 'None'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-476

Application Setting

Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-477

Byte ordering

Describe the byte ordering for the hardware that you use to test code.

Settings

Default: Unspecified

Unspecified

Specifies that the code determines the endianness of the hardware. This choice is the
least efficient.

Big Endian

The most significant byte comes first.
Little Endian

The least significant byte comes first.

Note: For guidelines about configuring Production hardware controls for code
generation, see Hardware Implementation Options.

Dependencies

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetEndianess
Type: string
Value: 'Unspecified' | 'LittleEndian' | 'BigEndian'
Default: 'Unspecified'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

1 Configuration Parameters Dialog Box

1-478

Application Setting

Efficiency No impact
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-479

Signed integer division rounds to

Describe how your compiler for the test hardware rounds the result of dividing two
signed integers.

Settings

Default: Undefined

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if
that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer
to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer
to negative infinity.

Tips

• Use the Integer rounding mode parameter on your model's blocks to simulate the
rounding behavior of the C compiler that you use to compile code generated from the
model. This setting appears on the Signal Attributes pane of the parameter dialog
boxes of blocks that can perform signed integer arithmetic, such as the Product
block.

• For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Rounding”.

• For information on how this option affects code generation, see Hardware
Implementation Options.

• This table illustrates the compiler behavior described by the options for this
parameter.

N D Ideal N/D Zero Floor Undefined

33 4 8.25 8 8 8

1 Configuration Parameters Dialog Box

1-480

N D Ideal N/D Zero Floor Undefined

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8 or 9

Dependency

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetIntDivRoundTo
Type: string
Value: 'Floor' | 'Zero' | 'Undefined'
Default: 'Undefined'

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No impact for simulation or during development.
Floor for production code generation.

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-481

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the test hardware fills the sign bit in a right shift of a
signed integer.

Settings

Default: On

 On
Generates simple, efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

 Off
Generates fully portable but less efficient code to implement right arithmetic shifts.

Tips

• Select this parameter if your C compiler implements a signed integer right shift as an
arithmetic right shift.

• An arithmetic right shift fills bits vacated by the right shift with the value of the most
significant bit, which indicates the sign of the number in twos complement notation. It
is equivalent to dividing the number by 2.

• This setting affects only code generation.

Dependency

• Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

• This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetShiftRightIntArith
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-482

Application Setting

Traceability No impact
Efficiency On
Safety precaution No impact

See Also

• Specifying Test Hardware Characteristics
• Hardware Implementation Options
• Hardware Implementation Pane

 Hardware Implementation Pane

1-483

Support long long

Specify that your C compiler supports the C long long data type. Most C99 compilers
support long long.

Settings

Default: Off

 On
Enables use of C long long data type on the test hardware.

 Off
Disables use of C long long data type on the test hardware.

Tips

• This parameter is enabled only if the selected test hardware supports the C long
long data type.

• If your compiler does not support C long long, do not select this parameter.

Dependencies

This parameter enables Number of bits: long long.

Command-Line Information
Parameter: TargetLongLongMode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

1 Configuration Parameters Dialog Box

1-484

See Also

• “Number of bits: long long” on page 1-466
• Hardware Implementation Options
• Specifying Production Hardware Characteristics
• Hardware Implementation Pane

 Hardware Implementation Pane

1-485

Build action

Specify whether you want only build or build, load, and run actions during code
generation.

Settings

Default: Build, load and run

Build

Build the code during the build process.
Build, load and run

Build, load, and to run the generated code during the build process.

1 Configuration Parameters Dialog Box

1-486

Set host COM port

Automatically detect or manually set the COM port your host computer uses to
communicate with the hardware board.

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Warning Do not connect Arduino® Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings

Default: Automatically

Automatically

Let the software determine which COM Port your host computer uses.
Manually

Select this option to display the COM port number parameter.

 Hardware Implementation Pane

1-487

Analog input reference voltage

Set the reference voltage used to measure inputs to the ANALOG IN pins.

This parameter appears when the Target hardware parameter is set to Arduino Mega
2560 or Arduino Uno.

Warning Only connect an external power source to AREF while this parameter is set to
External. Connecting an external power source to AREF while this parameter is set
to any other option exposes the internal voltage references to the external voltage. This
voltage difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages greater than 5 Volts.

Do not connect Arduino Due to voltages greater than 3.3 Volts.

Voltages greater than the specified limits can damage your Arduino hardware.

Settings

Default: Default

Default

Use the default operating voltage of the board. For Arduino Uno and Arduino Mega
2560 the operating voltage is 5 Volts.

Internal (1.1 V)

Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.
Internal (2.56 V)

Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.
External

On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an external 0-5 volt
power supply connected to the AREF pin. This voltage should match the voltage of
the power supply connected to the Arduino hardware. If your application requires
low-noise measurements, use this option with a filtered power supply.

1 Configuration Parameters Dialog Box

1-488

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate

Set the baud rate of the serial port on the Arduino hardware.

If you set Set host COM port to Manually, then set Serial 0 baud rate as described in
the “Set the COM Port and Baud Rate Manually” topic.

For information on serial ports for different Arduino boards, see “Pin Mapping on
Arduino Blocks”.

Settings

Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
128000, 500000, 1000000

 Hardware Implementation Pane

1-489

SPI clock out frequency (in MHz)

Select a value from the list of master clock frequency to obtain an SPI clock frequency.

Settings

Default: 4000

8000, 4000, 2000, 1000, 500, 250, 125

1 Configuration Parameters Dialog Box

1-490

Select an SPI mode for data transmission.

Settings

Default: Mode 0 - Clock Polarity 0, Clock Phase 0

• Mode 0 - Clock Polarity 0, Clock Phase 0

• Mode 1 - Clock Polarity 0, Clock Phase 1

• Mode 2 - Clock Polarity 1, Clock Phase 0

• Mode 3- Clock Polarity 1, Clock Phase 1

 Hardware Implementation Pane

1-491

Bit order

Select the bit order for transmissions.

MSB first to send the most significant bit first for transmission or select LSB first to
send the least significant bit first for transmission.

Settings

Default: MSB first

• MSB first – Send the most significant bit first for transmission.
• LSB first – Send the least significant bit first for transmission.

1 Configuration Parameters Dialog Box

1-492

IP address (Ethernet shield)

Enter the IP address of the Arduino Ethernet shield.

 Hardware Implementation Pane

1-493

MAC address

Enter the machine address of the Arduino Ethernet shield.

1 Configuration Parameters Dialog Box

1-494

IP address (WiFi shield)

Enter the IP address of the Arduino WiFi shield.

 Hardware Implementation Pane

1-495

Service set identifier (SSID)

Enter the SSID of your network. An SSID is a unique ID consisting of 32 characters and
is used for naming wireless networks. An SSID ensures that the data you send over the
network reaches the correct destination.

1 Configuration Parameters Dialog Box

1-496

WiFi encryption

The WiFi encryption of the network you connect to.

Settings

Default: None

None

Network is not WiFi encrypted.
WPA

Network uses WPA WiFi encryption.
WEP

Network uses WEP WiFi encryption.

 Hardware Implementation Pane

1-497

WEP key

Enter the WEP key of the network.

This parameter appears only when you select WEP for the WiFi encryption parameter.

1 Configuration Parameters Dialog Box

1-498

WEP key index

Enter the WEP key index of the WEP key.

This parameter appears only when you select WEP for the WiFi encryption parameter.

 Hardware Implementation Pane

1-499

WPA password

Enter the WPA password of the network.

This parameter appears only when you select WPA for the WiFi encryption parameter.

1 Configuration Parameters Dialog Box

1-500

Communication interface

Use the ‘serial’ option to run your model in the External mode with serial
communication.

Settings

Default: Serial

• Serial

• TCP/IP

• WiFi

 Hardware Implementation Pane

1-501

Verbose

Select this check box to view the External Mode execution progress and updates in the
Diagnostic Viewer or in the MATLAB Command Window. This parameter appears when
you select TCP/IP or WiFi for Communication interface.

1 Configuration Parameters Dialog Box

1-502

Model Referencing Pane

In this section...

“Model Referencing Pane Overview” on page 1-504
“Rebuild” on page 1-505
“Never rebuild diagnostic” on page 1-515
“Enable parallel model reference builds” on page 1-517
“MATLAB worker initialization for builds” on page 1-519
“Enable strict scheduling checks for referenced export-function models” on page 1-520
“Total number of instances allowed per top model” on page 1-521
“Pass fixed-size scalar root inputs by value for code generation” on page 1-523
“Minimize algebraic loop occurrences” on page 1-525

 Model Referencing Pane

1-503

In this section...

“Propagate all signal labels out of the model” on page 1-527
“Propagate sizes of variable-size signals” on page 1-530
“Model dependencies” on page 1-532

1 Configuration Parameters Dialog Box

1-504

Model Referencing Pane Overview

Specify the options for including other models in this model, this model in other models,
and for building simulation and code generation targets.

Configuration

Set the parameters displayed.

Tips

• To open the Model Referencing pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Model Referencing.

• The Model Referencing pane allows you to specify options for:

• Including other models in this model.
• Including the current model in other models.

• The option descriptions use the term this model to refer to the model that you are
configuring and the term referenced model to designate models referenced by this
model.

See Also

• Model Dependencies
• Model Referencing Pane

 Model Referencing Pane

1-505

Rebuild

Select the method used to determine when to rebuild simulation and Simulink Coder
targets for referenced models before updating, simulating, or generating code from this
model.

There are four rebuild options. Two options, Always and Never, either always
rebuild the model reference target or never rebuild the target, respectively. The
other two options, If any changes detected and If any changes in known
dependencies detected, cause Simulink to check the model and its dependencies to
determine whether or not to rebuild the model reference target. As part of this checking,
Simulink:

• Automatically identifies a set of “known” target dependencies that it examines for
changes.

• May compute the model’s structural checksum, which reflects changes to the model
that can affect simulation results.

For additional background information to help you determine which rebuild option
setting to use, see the “Definitions” and “Tips” sections.

Settings

Default: If any changes detected

Always

Always rebuild targets referenced by this model before simulating, updating, or
generating code from this model.

If any changes detected

Rebuild a target for a referenced model if Simulink detects a change that could
affect simulation results. To do this, Simulink first looks for changes to the target
dependencies and to the model, and, if none are found, it then computes the
structural checksum of the model to check that the model reference target is up to
date.

If any changes in known dependencies detected

Rebuild a target if Simulink detects a change in target dependencies or in both the
model and its structural checksum. If Simulink does not detect a change in target
dependencies or the model, it does not compute the structural checksum of the

1 Configuration Parameters Dialog Box

1-506

model and does not rebuild the model reference target. You must list all user-created
dependencies in the Configuration Parameters > Model Referencing > Model
dependencies parameter.

Never

Never rebuild targets referenced by this model before simulating, updating, or
generating code from this model.

Definitions

Known target dependencies
Known target dependencies are files and data outside of model files that Simulink
examines for changes when checking to see if a model reference target is up to date.
Simulink automatically computes a set of known target dependencies. Simulink
examines the known target dependencies to determine whether they have changed,
which it can do quickly. Examples of known target dependencies are:

• Changes to the model workspace, if its data source is a MAT-file or MATLAB file
• Enumerated type definitions
• User-written S-functions and their TLC files
• Files specified in the “Model dependencies” on page 1-532 parameter
• External files used by Stateflow, a MATLAB Function block, or a MATLAB

System block

Potential target dependencies
Potential dependencies are files and data outside of model files, as well as model
configuration settings, that Simulink examines for changes when checking to see if
a model reference target is up to date. Simulink automatically computes the set of
potential dependencies. Simulink examines the potential dependencies, which it can
do quickly. Examples of potential dependencies are:

• Changes to global variables
• Changes to targets of models referenced by this model
• The Configuration Parameters > Diagnostics > Data Validity > Signal

resolution parameter is set to a value other than Explicit only.

Simulink examines each potential target dependency to determine whether the state
of that dependency is a trigger for causing a structural checksum check.

 Model Referencing Pane

1-507

User-created dependencies
Although Simulink automatically examines every known target dependency, you can
have files that can impact the simulation results of your model that Simulink does
not automatically identify. Some examples of user-created dependencies are:

• MATLAB files that contain code executed by callbacks
• MAT-files that contain definitions for variables used by the model that are loaded

as part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by
using the Model dependencies parameter.

Structural checksum
As part of determining whether a model reference target is up to date, Simulink may
compute the structural checksum of a model, which reflects changes to the model
that can affect simulation results.

When Simulink computes the structural checksum, it loads and compiles the model.
To compile the model, Simulink must execute callbacks and access all variables that
the model uses. As a result, the structural checksum reflects changes to the model
that can affect simulation results, including changes in user-created dependencies,
regardless of whether you have specified those user-created dependencies in the
Model dependencies parameter.

For more information about the kinds of changes that affect the structural checksum,
see the Simulink.BlockDiagram.getChecksum documentation.

Tips

• You do not need to have the same rebuild option setting for every model in a model
reference hierarchy. When you simulate, update, or generate code for a model, the
rebuild option setting for that model applies to all models that it references.

• To improve rebuild detection speed and accuracy, use the “Model dependencies” on
page 1-532 parameter to specify user-created dependencies. If you use the If any
changes in known dependencies detected rebuild option, then specify all user-
created dependencies for your model in the “Model dependencies” on page 1-532
parameter.

• Each rebuild option setting has benefits and limitations, depending on your rebuild
goal. The following table lists the options in the order of the thoroughness of rebuild
detection. For detailed information about how Simulink determines whether a model

1 Configuration Parameters Dialog Box

1-508

reference target is out of date, see the Change Detection Processing table, which is
part of the next tip.

 Model Referencing Pane

1-509

Benefits and Limitations of Each Option

Rebuild Goal Rebuild Option Setting Notes

Make all the model
reference targets up to
date.

Always Requires the most
processing time.

Can trigger unnecessary
builds before simulating,
updating, or generating
code from a referenced
model.

Before you deploy a model,
use the Always setting.

Perform extensive
detection of changes
to dependencies of the
referenced models.

If any changes

detected

Default.

Reduces the number of
rebuilds, compared to the
Always setting.

Detects changes in the
dependencies of the target,
as well as changes in the
structural checksum of the
referenced model.

The structural checksum
can detect changes that
occur in user-created
dependencies that are not
specified with the “Model
dependencies” on page
1-532 parameter.

Reduce time required for
rebuild detection.

If any changes in

known dependencies

detected

Reduces the number of
rebuilds, compared to
the If any changes
detected option. Ignores
cosmetic changes, such as
annotation changes, in the

1 Configuration Parameters Dialog Box

1-510

Rebuild Goal Rebuild Option Setting Notes

referenced model and its
libraries.

Subset of the checks
performed by the If any
changes detected option.

Invalid simulation results
may occur if you do not
specify with the “Model
dependencies” on page
1-532 parameter every
user-created dependency.

Avoid rebuilds during
model development.

Never Least amount of processing
time, but requires that
you ensure that the model
reference targets are up to
date.

If you are certain that the
model reference targets
are up to date, you can use
this option to avoid target
dependency checking when
simulating, updating, or
generating code from a
model.

May lead to invalid results
if referenced model targets
are not in fact up to date.

To have Simulink check for
changes in known target
dependencies and report if
the model reference targets
may be out of date, use the
“Never rebuild diagnostic”
on page 1-515 parameter.

 Model Referencing Pane

1-511

Rebuild Goal Rebuild Option Setting Notes

To manually rebuild model
reference targets, use the
slbuild function.

• To detect whether to perform a rebuild, Simulink uses different processing for each
Rebuild setting. The following table summarizes the main types of change detection
checks that Simulink performs.

Change Detection Processing

Rebuild Option Setting Simulink Change Detection Processing

Always Does no change detection processing.

Always rebuilds targets referenced by this model before
simulating, updating, or generating code from this model.

If any changes

detected

and

If any changes in

known dependencies

detected

See the flow chart, below.

Never Change detection processing determined by the “Never
rebuild diagnostic” on page 1-515 parameter.

The following flow chart describes the processing Simulink performs when you set
Rebuild to either If any changes detected or If any changes in known
dependencies detected. The “Compare Checksum” boxes indicate that Simulink
detects whether the structural checksum has changed. If the structural checksum has
changed, then Simulink performs a rebuild.

1 Configuration Parameters Dialog Box

1-512

 Model Referencing Pane

1-513

• The following examples illustrate differences between the If any changes
detected and If any changes in known dependencies detected options.

If you change a MATLAB file that is executed as part of a callback script (or other
user-created dependency) that you have not listed in the Model dependencies
parameter:

• If any changes detected – Causes a rebuild, because the change to the file
changes the structural checksum of the model.

• If any changes in known dependencies detected – Does not cause a
rebuild, because no known target dependency has changed.

If you move a block in a model:

• If any changes detected – Causes a rebuild, because the model has changed.
• If any changes in known dependencies detected – Does not cause a

rebuild, because this change does not change the model’s structural checksum.

Dependency

Selecting Never enables the Never rebuild diagnostic parameter.

Command-Line Information
Parameter: UpdateModelReferenceTargets
Type: string
Value: 'Force' | 'IfOutOfDateOrStructuralChange' | 'IfOutOfDate' |
'AssumeUpToDate'

Default: 'IfOutOfDateOrStructuralChange'

UpdateModelReferenceTargets Value Equivalent Rebuild Value

'Force' Always

'IfOutOfDateOrStructuralChange' If any changes detected

'IfOutOfDate' If any changes in known dependencies

detected

'AssumeUpToDate' Never

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-514

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution If any changes detected or Never

If you use the Never setting, then set the Never
rebuild diagnostic parameter to Error if
rebuild required.

See Also

• Model Dependencies
• Model Referencing Pane
• Simulink.BlockDiagram.getChecksum

 Model Referencing Pane

1-515

Never rebuild diagnostic

Select the diagnostic action that Simulink software should take if it detects a model
reference target that needs to be rebuilt.

Settings

Default: Error if rebuild required

none

Simulink takes no action.
Warn if rebuild required

Simulink displays a warning.
Error if rebuild required

Simulink terminates the simulation and displays an error message.

Tip

If you set the Rebuild parameter to Never and set the Never rebuild diagnostic
parameter to Error if rebuild required or Warn if rebuild required, then
Simulink:

• Performs the same change detection processing as for the If any changes in
known dependencies detected rebuild option setting, except it does not compare
structural checksums

• Issues an error or warning (depending on the Never rebuild diagnostic setting), if
it detects a change

• Never rebuilds the model reference target

Selecting None bypasses dependency checking, and thus enables faster updating,
simulation, and code generation. However, the None setting can cause models that are
not up to date to malfunction or generate incorrect results. For more information on the
dependency checking, see “Rebuild” on page 1-505.

Dependency

This parameter is enabled only if you select Never in the Rebuild field.

Command-Line Information
Parameter: CheckModelReferenceTargetMessage

1 Configuration Parameters Dialog Box

1-516

Type: string
Value: 'none' | 'warning' | 'error'
Default: 'error'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Error if rebuild required

See Also

• Diagnosing Simulation Errors
• Model Referencing Pane

 Model Referencing Pane

1-517

Enable parallel model reference builds

Specify whether to use automatic parallel building of the model reference hierarchy
whenever possible.

Settings

Default: Off

 On
Simulink software builds the model reference hierarchy in parallel whenever possible
(based on computing resources and the structure of the model reference hierarchy).

 Off
Simulink never builds the model reference hierarchy in parallel.

Dependency

Selecting this option enables the MATLAB worker initialization for builds
parameter.

Tip

You only need to set Enable parallel model reference builds for the top model of the
model reference hierarchy to which it applies.

Command-Line Information
Parameter: EnableParallelModelReferenceBuilds
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1 Configuration Parameters Dialog Box

1-518

See Also

• “Reduce Update Time for Referenced Models”
• “Reduce Build Time for Referenced Models” in the Simulink Coder documentation
• Model Referencing Pane

 Model Referencing Pane

1-519

MATLAB worker initialization for builds

Specify how to initialize MATLAB workers for parallel builds.

Settings

Default: None

None

Simulink software takes no action. Specify this value if the child models in the model
reference hierarchy do not rely on anything in the base workspace beyond what they
explicitly set up (for example, with a model load function).

Copy base workspace

Simulink attempts to copy the base workspace to each MATLAB worker. Specify this
value if you use a setup script to prepare the base workspace for all models to use.

Load top model

Simulink loads the top model on each MATLAB worker. Specify this value if the top
model in the model reference hierarchy handles all of the base workspace setup (for
example, with a model load function).

Limitation

For values other than None, limitations apply to global variables in the base workspace.
Global variables are not propagated across parallel workers and do not reflect changes
made by top and child model scripts.

Dependency

Selecting the option Enable parallel model reference builds enables this parameter.

Command-Line Information
Parameter: ParallelModelReferenceMATLABWorkerInit
Type: string
Value: 'None' | 'Copy Base Workspace' | 'Load Top Model'
Default: 'None'

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-520

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Reduce Update Time for Referenced Models”
• “Reduce Build Time for Referenced Models” in the Simulink Coder documentation
• Model Referencing Pane

Enable strict scheduling checks for referenced export-function models

This parameter enables these checks for referenced export-function models:

• Scheduling order consistency of function-call subsystems in the referenced model
• Sample time consistency across the referenced model boundary

Settings

Default: On

 On
Simulink enforces strict checks on scheduling order and sample time consistency in
referenced export-function models.

 Off
Simulink does not enforce strict checks on scheduling order and sample time
consistency in referenced export-function models.

Command-Line Information
Parameter: EnableRefExpFcnMdlSchedulingChecks
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• “Execution Order for Function-Call Root-level Inport Blocks”

 Model Referencing Pane

1-521

• “Scheduling Restrictions for Referenced Export-Function Models”

Total number of instances allowed per top model

Specify how many references to this model can occur in another model.

Settings

Default: Multiple

Zero

The model cannot be referenced. An error occurs if a reference to the model occurs in
another model.

One

The model can be referenced at most once in a model reference hierarchy. An error
occurs if more than one reference exists.

Multiple

The model can be referenced more than once in a hierarchy, provided that it contains
no constructs that preclude multiple reference. An error occurs if the model cannot be
multiply referenced, even if only one reference exists.

To use multiple instances of a referenced model in Normal mode, use the Multiple
setting. For details, see “Using Normal Mode for Multiple Instances of Referenced
Models”.

Command-Line Information
Parameter: ModelReferenceNumInstancesAllowed
Type: string
Value: 'Zero' | 'Single' | 'Multi'
Default: 'Multi'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1 Configuration Parameters Dialog Box

1-522

See Also

• Diagnosing Simulation Errors
• Model Referencing Pane

 Model Referencing Pane

1-523

Pass fixed-size scalar root inputs by value for code generation

Specify whether a model that calls (references) this model passes its scalar inputs to this
model by value.

Settings

Default: Off (GUI), 'on' (command-line)

 On
A model that calls (references) this model passes scalar inputs to this model by value.

 Off
The calling model passes the inputs by reference (it passes the addresses of the
inputs rather than the input values).

Tips

• This option is ignored in either of these two cases:

• The C function prototype control is not the default.
• The C++ encapsulation interface is not the default.

• Passing root inputs by value allows this model to read its scalar inputs from register
or local memory, which is faster than reading the inputs from their original locations.

• Enabling this parameter can result in the simulation behavior differing from
the generated code behavior under certain modeling semantics. If you use the
default setting of Enable all as errors for the Configuration Parameters
> Diagnostics > Connectivity > Context-dependent inputs parameter, then
Simulink reports cases where the modeling semantics may result in inconsistent
behaviors for simulation and for generated code. If the diagnostic identifies an
issue, latch the function-call subsystem inputs. For more information about latching
function-call subsystems, see “Context-dependent inputs” on page 1-340.

• If the Context-dependent inputs diagnostic reports no issues for a model, consider
enabling the Pass fixed-size scalar root inputs by value for code generation
parameter, which usually generates more efficient code for such a model.

• If you have a Simulink Coder license, selecting this option can affect reuse of code
generated for subsystems. See Reusable Code and Referenced Models for more
information.

1 Configuration Parameters Dialog Box

1-524

• For SIM targets, a model that references this model passes inputs by reference,
regardless of how you set the Pass fixed-size scalar root inputs by value for
code generation parameter.

Command-Line Information
Parameter:ModelReferencePassRootInputsByReference
Type: string
Value: 'on' | 'off'
Default: 'on'

Note: The command-line values are reverse of the settings values. Therefore, 'on' in the
command line corresponds to the description of “Off” in the settings section, and 'off'
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off (GUI), on (command line)

See Also

• “Create a Function-Call Subsystem”
• Reusable Code and Referenced Models
• Model Referencing Pane

 Model Referencing Pane

1-525

Minimize algebraic loop occurrences

Try to eliminate artificial algebraic loops from a model that involve the current
referenced model

Settings

Default: Off

 On
Simulink software tries to eliminate artificial algebraic loops from a model that
involve the current referenced model.

 Off
Simulink software does not try to eliminate artificial algebraic loops from a model
that involve the current referenced model.

Tips

Enabling this parameter together with the Simulink Coder Single output/update
function parameter results in an error.

Command-Line Information
Parameter: ModelReferenceMinAlgLoopOccurrences
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

• Model block

1 Configuration Parameters Dialog Box

1-526

• “Algebraic Loops”
• Model Blocks and Direct Feedthrough
• Diagnosing Simulation Errors
• Model Referencing Pane

 Model Referencing Pane

1-527

Propagate all signal labels out of the model

Pass propagated signal names to output signals of Model block.

Settings

Default: Off

 On
Simulink propagates signal names to output signals of the Model block.

 Off
Simulink does not propagate signal names to output signals of the Model block.

Tips

• Enable this parameter for each instance of a referenced model for which you want to
propagate signal labels.

• The following models illustrate the default behavior, when signal label propagation is
enabled for every eligible signal. Inside the referenced model, signal label propagation
occurs as in any model. However, the output signal from the Model block Out2 port
displays empty brackets for the propagated signal label.

1 Configuration Parameters Dialog Box

1-528

• The following models illustrate the behavior when you enable the Propagate
all signal labels out of the model parameter for the referenced model. The
output signal from the Model block Out2 port displays the propagated signal name
(Chirp_sig), whose source is inside the referenced model.

 Model Referencing Pane

1-529

Command-Line Information
Parameter: PropagateSignalLabelsOutOfModel
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

• Model block
• “Signal Label Propagation”

1 Configuration Parameters Dialog Box

1-530

Propagate sizes of variable-size signals

Select how variable-size signals propagate through referenced models.

Settings

Default: Infer from blocks in model

Infer from blocks in model

Searches a referenced model and groups blocks into the following categories.

Category Description Example Blocks in This Category

1 Output signal size depends
on input signal values.

Switch or Enable Subsystem block whose
parameter Propagate sizes of variable-
size signals is set to During execution

2 States require resetting
when the input signal size
changes.

Unit Delay block in an Enabled
Subsystem whose parameter Propagate
sizes of variable-size signals is set to
Only when enabling

3 Output signal size depends
only on the input signal
size.

Gain block.

The search stops at the boundary of Enable, Function-Call, and Action subsystems
because these subsystems can specify when to propagate the size of a variable-size
signal.

Simulink sets the propagation of variable-size signals for a referenced model as
follows:

• One or more blocks in category 1, and all other blocks are in category 3, select
During execution.

• One or more blocks in category 2, and all another blocks are in category 3, select
Only when enabling.

• Blocks in category 1 and 2, report an error.
• All blocks in category 3 with a conditionally executed subsystem that is not an

Enable, Function-Call, or Action subsystem, report an error. Simulink, in this
case, cannot determine when to propagate sizes of variable-size signals.

 Model Referencing Pane

1-531

• All blocks in category 3 with only conditionally executed subsystems that are an
Enable, Function-Call, or Action subsystem, support both Only with enabling
and During execution.

Only when enabling

Propagates sizes of variable-size signals for the referenced model only when enabling
(at Enable method).

During execution

Propagates sizes of variable-size signals for the referenced model during execution (at
Outputs method).

Command-Line Information
Parameter: PropagateVarSize
Type: string
Value: 'Infer from blocks in model' | 'Only when enabling'| 'During
execution'

Default: 'Infer from blocks in model'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Model Referencing Pane

1 Configuration Parameters Dialog Box

1-532

Model dependencies

Although Simulink automatically examines every known target dependency, you can
have files that can impact the simulation results of your model that Simulink does not
automatically identify. Some examples of user-created dependencies are:

• MATLAB files that contain code executed by callbacks
• MAT-files that contain definitions for variables used by the model that are loaded as

part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by using
the Model dependencies parameter.

Simulink examines the files specified with the Model dependencies parameter when
determining whether the model reference target is up to date. If the “Rebuild” on page
1-505 parameter is set to:

• Always, then the listed files are not examined.
• Either If any changes detected or If any changes in known

dependencies detected, then changes to listed files cause the model reference
target to rebuild.

• Never, and the “Never rebuild diagnostic” on page 1-515 parameter is set to either
Warn if rebuild required or Error if rebuild required, then changes to
listed files cause Simulink to report a warning or error.

Settings

Default: ''

• Specify the dependencies as a cell array of strings, where each cell array entry is one
of the following:

• File name — Simulink looks on the MATLAB path for a file with the given name.
If the file is not on the MATLAB path, then specify the path to the dependent file,
as described below.

• Path to the dependent file — The path can be relative or absolute, and must
include the file name.

• Folder — Simulink treats every file in that folder as a dependent file. Simulink
does not include files of subfolders of the folder you specify.

 Model Referencing Pane

1-533

• File names must include a file extensions (for example, .m or .mat)
• File names and paths can include spaces.
• You can use the following characters in the strings:

• The token $MDL, as a prefix to a dependency to indicate that the path to the
dependency is relative to the location of this model file

• An asterisk (*), as a wild card
• A percent sign (%), to comment out a line
• An ellipsis (...), to continue a line

For example:

{'D:\Work\parameters.mat', '$MDL\mdlvars.mat', ...

'D:\Work\masks*.m'}

Tips

• To improve rebuild detection speed and accuracy, use the Model dependencies
parameter to specify model dependencies other than those that Simulink checks
automatically as part of the its rebuild detection. For details, see the “Rebuild” on
page 1-505 parameter documentation.

• If the Rebuild setting is If any changes in known dependencies detected,
to prevent invalid simulation results, add every user-created dependency (for
example, MATLAB code files or MAT-files).

• Using the Simulink Manifest Tools can help you to identify model dependencies. For
more information, see “Analyze Model Dependencies”.

• If Simulink cannot find a specified dependent file when you update or simulate a
model that references this model, Simulink displays a warning.

• The dependencies automatically include the model and linked library files, so you do
not need to specify those files with the Model dependencies parameter.

Command-Line Information
Parameter: ModelDependencies
Type: string
Value: any valid value
Default: ''

1 Configuration Parameters Dialog Box

1-534

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• “Rebuild” on page 1-505
• Model Referencing Pane

 Simulation Target Pane: General

1-535

Simulation Target Pane: General

In this section...

“Simulation Target: General Tab Overview” on page 1-536
“Ensure responsiveness” on page 1-539
“Echo expressions without semicolons” on page 1-541
“Ensure memory integrity” on page 1-543
“Generate typedefs for imported bus and enumeration types” on page 1-545
“Simulation target build mode” on page 1-546

1 Configuration Parameters Dialog Box

1-536

Simulation Target: General Tab Overview

Configure the simulation target for a model that contains MATLAB Function blocks,
Stateflow charts, or Truth Table blocks.

Configuration

Set the parameters that appear.

Tip

To open the Simulation Target pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Simulation Target.

See Also

• Speeding Up Simulation
• Simulation Target Pane: General

 Simulation Target Pane: General

1-537

1 Configuration Parameters Dialog Box

1-538

 Simulation Target Pane: General

1-539

Ensure responsiveness

Enables responsiveness checks in code generated for MATLAB Function blocks.

Settings

Default: On

 On
Enables periodic checks for Ctrl+C breaks in code generated for MATLAB Function
blocks. Also allows graphics refreshing.

 Off
Disables periodic checks for Ctrl+C breaks in code generated for MATLAB Function
blocks. Also disables graphics refreshing.

Caution Without these checks, the only way to end a long-running execution might be
to terminate the MATLAB session.

Command-Line Information
Parameter: SimCtrlC
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency Off
Safety precaution On

See Also

• “Control Run-Time Checks” in the Simulink User's Guide
• Simulation Target Pane: General

1 Configuration Parameters Dialog Box

1-540

 Simulation Target Pane: General

1-541

Echo expressions without semicolons

Enable run-time output in the MATLAB Command Window, such as actions that do not
terminate with a semicolon. This behavior applies to a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: On

 On
Enables run-time output to appear in the MATLAB Command Window during
simulation.

 Off
Disables run-time output from appearing in the MATLAB Command Window during
simulation.

Tip

• If you disable run-time output, faster model simulation occurs.

Command-Line Information
Parameter: SFSimEcho
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency Off
Safety precaution No impact

See Also

• Speeding Up Simulation

1 Configuration Parameters Dialog Box

1-542

• Simulation Target Pane: General

 Simulation Target Pane: General

1-543

Ensure memory integrity

Detects violations of memory integrity in code generated for MATLAB Function blocks
and stops execution with a diagnostic.

Settings

Default: On

 On
Detect violations of memory integrity in code generated for MATLAB Function blocks
and stops execution with a diagnostic message.

 Off
Does not detect violations of memory integrity in code generated for MATLAB
Function blocks.

Caution Without these checks, violations result in unpredictable behavior.

Tips

• The most likely cause of memory integrity issues is accessing an array out of bounds.
• Only disable these checks if you are sure that your code is safe and that all array

bounds and dimension checking is unnecessary.

Command-Line Information
Parameter: SimIntegrity
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability On
Efficiency Off

1 Configuration Parameters Dialog Box

1-544

Application Setting

Safety precaution On

See Also

• “Control Run-Time Checks” in the Simulink User's Guide
• Simulation Target Pane: General

 Simulation Target Pane: General

1-545

Generate typedefs for imported bus and enumeration types

Determines typedef handling and generation for imported bus and enumeration data
types in Stateflow and MATLAB Function blocks.

Settings

Default: Off

 On
The software will generate its own typedefs for imported bus and enumeration types.

 Off
The software will not generate its own typedefs for imported bus and enumeration
types, and will use definitions in the included header file. This setting requires you
to include header files in Configuration Parameters, under Simulation Target >
Custom Code > Header file.

Tips

• This selection applies if you are using imported bus or enumeration data types in
Stateflow and MATLAB Function blocks.

Command-Line Information
Parameter: SimGenImportedTypeDefs
Type: string
Value: 'on' | 'off'
Default: 'off'

1 Configuration Parameters Dialog Box

1-546

Simulation target build mode

Specifies how you build the simulation target for a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: Incremental build

Incremental build

This option rebuilds only those portions of the target that you changed since the last
build.

Rebuild all (including libraries)

This option rebuilds the target, including libraries, from scratch.
Make without generating code

This option invokes the make process without generating code.
Clean all (delete generated code/executables)

This option deletes both generated source code and executable files.
Clean objects (delete executables only)

This option deletes only executable files.

Tips

• The default Incremental build is a good choice for most models. This action takes
place whenever you simulate your model.

• Set Rebuild all (including libraries) if you have changed your compiler or
updated your object files since the last simulation. For example, use this option to
rebuild the simulation target to include custom code changes.

• Set Make without generating code when you have custom source files that you
must recompile in an incremental build mechanism that does not detect changes in
custom code files.

Command-Line Information
Parameter: SimBuildMode
Type: string
Value: 'sf_incremental_build' | 'sf_nonincremental_build' | 'sf_make' |
'sf_make_clean' | 'sf_make_clean_objects'

 Simulation Target Pane: General

1-547

Default: 'sf_incremental_build'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Simulation Target Pane: General

1 Configuration Parameters Dialog Box

1-548

Simulation Target Pane: Symbols

In this section...

“Simulation Target: Symbols Tab Overview” on page 1-549
“Reserved names” on page 1-550

 Simulation Target Pane: Symbols

1-549

Simulation Target: Symbols Tab Overview

Configuration

1 Enter reserved names for a model that contains MATLAB Function blocks, Stateflow
charts, or Truth Table blocks.

2 Click Apply.

Tip

To open the Simulation Target: Symbols pane, in the Simulink Editor, select Simulation
> Model Configuration Parameters > Simulation Target > Symbols.

See Also

• Simulation Target Pane: Symbols

1 Configuration Parameters Dialog Box

1-550

Reserved names

Enter the names of variables or functions in the generated code that match the names
of variables or functions specified in custom code for a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: {}

This action changes the names of variables or functions in the generated code to avoid
name conflicts with identifiers in custom code. Reserved names must be shorter than 256
characters.

Tips

• Start each reserved name with a letter or an underscore to prevent error messages.
• Each reserved name must contain only letters, numbers, or underscores.
• Separate the reserved names using commas or spaces.
• You can also specify reserved names by using the command line:

config_param_object.set_param('SimReservedNameArray', {'abc','xyz'})

where config_param_object is the object handle to the model settings in the
Configuration Parameters dialog box.

Command-Line Information
Parameter: SimReservedNameArray
Type: string array
Value: any reserved names shorter than 256 characters
Default: {}

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

 Simulation Target Pane: Symbols

1-551

See Also

• Simulation Target Pane: Symbols

1 Configuration Parameters Dialog Box

1-552

Simulation Target Pane: Custom Code

In this section...

“Simulation Target: Custom Code Tab Overview” on page 1-554
“Parse custom code symbols” on page 1-555
“Source file” on page 1-557

 Simulation Target Pane: Custom Code

1-553

In this section...

“Header file” on page 1-558
“Initialize function” on page 1-559
“Terminate function” on page 1-560
“Include directories” on page 1-561
“Source files” on page 1-563
“Libraries” on page 1-564
“Use local custom code settings (do not inherit from main model)” on page 1-565

1 Configuration Parameters Dialog Box

1-554

Simulation Target: Custom Code Tab Overview

Include custom code settings for a model that contains MATLAB Function blocks,
Stateflow charts, or Truth Table blocks.

Configuration

1 Select the type of information to include from the list on the left side of the pane.
2 Enter a string to identify the specific code, folder, source file, or library.
3 Click Apply.

Tip

To open the Simulation Target: Custom Code pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Simulation Target > Custom
Code.

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

 Simulation Target Pane: Custom Code

1-555

Parse custom code symbols

Specify whether or not to parse the custom code and report unresolved symbols in a
model. This setting applies to all C charts in the model, including library link charts.

Settings

Default: On

 On
Enables parsing of custom code to report unresolved symbols in C charts of your
model.

 Off
Disables parsing of custom code.

Tips

• When you create a new model, this check box is selected by default.
• When you load models saved as version R2010a or earlier, this check box is selected

only if the MEX compiler is lcc. Otherwise, the check box is not selected.
• This option only applies to C charts, not charts that use MATLAB as the action

language.

Command-Line Information
Parameter: SimParseCustomCode
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging On
Traceability No impact
Efficiency No impact
Safety precaution On

1 Configuration Parameters Dialog Box

1-556

See Also

• Including Custom C Code
• Resolving Symbols in Stateflow Charts
• Simulation Target Pane: Custom Code

 Simulation Target Pane: Custom Code

1-557

Source file

Enter code lines to appear near the top of a generated source code file.

Settings

Default: ' '

Code lines appear near the top of the generated model.c source file, outside of any
function.

Command-Line Information
Parameter: SimCustomSourceCode
Type: string
Value: any C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

1 Configuration Parameters Dialog Box

1-558

Header file

Enter code lines to appear near the top of a generated header file.

Settings

Default: ' '

Code lines appear near the top of the generated model.h header file.

Tips

• When you include a custom header file, enclose the file name in double quotes. For
example, #include "sample_header.h" is a valid declaration for a custom header
file.

• You can include extern declarations of variables or functions.

Command-Line Information
Parameter: SimCustomHeaderCode
Type: string
Value: any C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

 Simulation Target Pane: Custom Code

1-559

Initialize function

Enter code statements that execute once at the start of simulation.

Settings

Default: ' '

Code appears inside the model's initialize function in the model.c file.

Tip

• Use this code to invoke functions that allocate memory or to perform other
initializations of your custom code.

Command-Line Information
Parameter: SimCustomInitializer
Type: string
Value: any C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

1 Configuration Parameters Dialog Box

1-560

Terminate function

Enter code statements that execute at the end of simulation.

Settings

Default: ' '

Code appears inside the model's terminate function in the model.c file.

Tip

• Use this code to invoke functions that free memory allocated by the custom code or to
perform other cleanup tasks.

Command-Line Information
Parameter: SimCustomTerminator
Type: string
Value: any C code
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

 Simulation Target Pane: Custom Code

1-561

Include directories

Specify a list of folder paths that contain files you include in the compiled target.

Settings

Default:''

Enter a space-separated list of folder paths.

• Specify absolute or relative paths to the directories.
• Relative paths must be relative to the folder containing your model files, not relative

to the build folder.
• The order in which you specify the directories is the order in which they are searched

for header, source, and library files.

Note: If you specify a Windows® path string containing one or more spaces, you must
enclose the string in double quotes. For example, the second and third path strings in the
Include directories entry below must be double-quoted:

C:\Project "C:\Custom Files" "C:\Library Files"

If you set the equivalent command-line parameter SimUserIncludeDirs, each path
string containing spaces must be separately double-quoted within the single-quoted third
argument string, for example,

>> set_param('mymodel', 'SimUserIncludeDirs', ...

 'C:\Project "C:\Custom Files" "C:\Library Files"')

Command-Line Information
Parameter: SimUserIncludeDirs
Type: string
Value: any folder path
Default: ''

Recommended Settings

Application Setting

Debugging No impact

1 Configuration Parameters Dialog Box

1-562

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

 Simulation Target Pane: Custom Code

1-563

Source files

Specify a list of source files to compile and link into the target.

Settings

Default:''

You can separate source files with a comma, a space, or a new line.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tip

• The file name is sufficient if the file is in the current MATLAB folder or in one of the
include directories.

Command-Line Information
Parameter: SimUserSources
Type: string
Value: any file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

1 Configuration Parameters Dialog Box

1-564

Libraries

Specify a list of static libraries that contain custom object code to link into the target.

Settings

Default:''

Enter a space-separated list of library files.

Limitation

This parameter does not support Windows file names that contain embedded spaces.

Tip

• The file name is sufficient if the file is in the current MATLAB folder or in one of the
include directories.

Command-Line Information
Parameter: SimUserLibraries
Type: string
Value: any library file name
Default: ''

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code
• Simulation Target Pane: Custom Code

 Simulation Target Pane: Custom Code

1-565

Use local custom code settings (do not inherit from main model)

Specify if a library model can use custom code settings that are unique from the main
model.

Settings

Default: Off

 On
Enables a library model to use custom code settings that are unique from the main
model.

 Off
Disables a library model from using custom code settings that are unique from the
main model.

Dependency

This parameter is available only for library models that contain MATLAB Function
blocks, Stateflow charts, or Truth Table blocks. To access this parameter, in the
MATLAB Function Block Editor, select Tools > Open Simulation Target.

Command-Line Information
Parameter: SimUseLocalCustomCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also

• Including Custom C Code

1 Configuration Parameters Dialog Box

1-566

• Simulation Target Pane: Custom Code

 Run on Target Hardware Pane

1-567

Run on Target Hardware Pane

In this section...

“Hardware Implementation Pane Overview” on page 1-569
“Target hardware” on page 1-570
“External mode transport layer” on page 1-571
“Enable External mode” on page 1-572
“IP address” on page 1-573
“Connection type” on page 1-574
“Device name” on page 1-575

1 Configuration Parameters Dialog Box

1-568

In this section...

“TCP/IP port (1024-65535)” on page 1-576
“Enable overrun detection” on page 1-577
“Device” on page 1-578
“Package name” on page 1-579
“Digital output to set on overrun” on page 1-580
“Enable communication between two NXT bricks” on page 1-581
“Bluetooth mode” on page 1-582
“Slave Bluetooth address” on page 1-583
“Host name” on page 1-584
“User name” on page 1-585
“Password” on page 1-586
“Build directory” on page 1-587
“Set host COM port” on page 1-587
“COM port number” on page 1-588
“Analog input reference voltage” on page 1-588
“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate” on page
1-589
“IP address” on page 1-589
“MAC address” on page 1-589
“IP address” on page 1-590
“Service set identifier (SSID)” on page 1-590
“WiFi encryption” on page 1-590
“WPA password” on page 1-590
“WEP key” on page 1-590
“WEP key index” on page 1-590

 Run on Target Hardware Pane

1-569

Hardware Implementation Pane Overview

Specify the options for creating and running applications on target hardware.

Configuration

To configure a Simulink model to run on the target hardware, select Simulation >
Model Configuration Parameters.

1 In the Configuration Parameters dialog box, click Hardware Implementation.
2 Select the Hardware board to match your target hardware.
3 (Optional) Review and set the other parameters.
4 Apply the changes.

Tip

After configuring a Simulink model, you can reopen the configuration parameters dialog
box by selecting Simulation > Model Configuration Parameters.

1 Configuration Parameters Dialog Box

1-570

Target hardware

Select the type of hardware upon which to run your model.

Changing this parameter updates the Configuration Parameters dialog so it only displays
parameters that are relevant to your target hardware.

To install support for target hardware, start Support Package Installer by selecting Get
more, or by entering supportPackageInstaller in the MATLAB Command Window.

After installing support for your target hardware, reopen the Configuration Parameters
dialog and select your target hardware.

Settings

Default: None

None

This setting means your model has not been configured to run on target hardware.
Choose your target hardware from the list of options.

Get more...

Select this option to start Support Package Installer and install support for
additional hardware.

 Run on Target Hardware Pane

1-571

External mode transport layer

Select the transport layer the External mode uses to communicate between the Arduino
hardware and the host computer:

• serial uses the standard serial USB connection.
• tcpip uses the Ethernet connection specified by the Ethernet shield properties.
• wifi uses the Wi-Fi connection specified by the WiFi shield properties.

1 Configuration Parameters Dialog Box

1-572

Enable External mode

Enable External mode to tune and monitor a model while it runs on your hardware
board.

With External mode, changing a parameter value in the model on the host changes the
corresponding value in the model running on the hardware. Similarly, scopes in the
model display data from the model running on the hardware.

Enabling External mode adds a lightweight server to the model running on the hardware
board. This server increases the processing burden upon the hardware board, which can
result in an overrun condition. If you enable the Enable overrun detection check box,
and the software reports an overrun, consider disabling External mode.

Enabling the External mode parameter makes the following communication-related
parameters visible:

• Set host COM port LEGO® MINDSTORMS® NXT hardware and Arduino Mega
2560 hardware

• TCP/IP port (1024-65535) for BeagleBoard hardware

Enabling the External mode parameter disables the Enable communication
between two NXT bricks parameter LEGO MINDSTORMS NXT hardware.

Settings

Default: Disabled

Disabled
The model application does not support External mode.

Enabled
The model application supports External mode.

 Run on Target Hardware Pane

1-573

IP address

The IP address of the LEGO MINDSTORMS EV3 brick.

1 Configuration Parameters Dialog Box

1-574

Connection type

Choose the connection Simulink uses to download your model from the host computer to
the NXT hardware.

Set up a USB or Bluetooth® connection before running the model on the NXT hardware.

Note: The NXT hardware always uses a Bluetooth connection for External mode
communications. The Connection type parameter does not affect External mode
communications.

Settings

Default: USB connection

USB connection

Use a USB connection to download a model to the NXT hardware.
Bluetooth connection

Use a Bluetooth connection to download a model to the NXT hardware.

 Run on Target Hardware Pane

1-575

Device name

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT and the Connection type parameter is set to Bluetooth
connection.

While you are setting up a Bluetooth connection, get the name of the NXT hardware
in Windows Devices and Printers and assign it to the Device name parameter.
For example, if the Windows device name is “myNXT”, enter myNXT for Device name
parameter in the Configuration Parameters dialog.

1 Configuration Parameters Dialog Box

1-576

TCP/IP port (1024-65535)

This parameter appears when the Hardware board setting supports External mode.

Set the value of the TCP/IP port number, from 1024 to 65535. External mode uses this
IP port for communications between the target hardware (hardware board) and host
computer.

Settings

Default: 17725

 Run on Target Hardware Pane

1-577

Enable overrun detection

Detect when a task overruns occurs in a model running on the hardware board. Indicate
when an overrun has occurred.

A task overrun occurs if the hardware board is still performing one instance of a task
when the next instance of that task is scheduled to begin.

The “Detect and Fix Task Overruns” topics listed in the following “See Also” subtopic
describe how your hardware board indicates that an overrun has occurred.

You can fix overruns by decreasing the frequency with which tasks are scheduled to run,
and by reducing the number or complexity of the tasks defined by your model.

If those solutions do not fix the task overrun condition, and you are using External mode,
consider disabling External mode.

Settings

Default: Disabled

Disabled
Do not detect overruns.

Enabled
Detect overruns and generate an error message when an overrun occurs.

1 Configuration Parameters Dialog Box

1-578

Device

This parameter appears when the Hardware board parameter is set to your device
type, and Show advanced settings has been clicked.

Select the device you are using. The list includes any devices that are connected to your
computer and turned on.

To see a device that was recently connected and turned on, click Refresh. Refreshing the
parameters updates Device, Host name, and Package name parameter fields.

Settings

Default: None

 Run on Target Hardware Pane

1-579

Package name

This parameter appears when the Hardware board parameter is set to one of the
Samsung Galaxy Android™ devices, and Show advanced settings has been clicked.

Update this value with a unique name. Refer to the Android Developer instructions
the package attribute in <manifest>. The package name uniquely identifies the
application you are creating, and determines the path names your application uses.
To avoid conflicts with apps created by other developers, use a domain name that you
own as the beginning of the package name. Reverse the order of the elements, like this:
com.mydomain.myappname.

Warning Do not use com.example to publish applications (make the app publicly
available).

Settings

Default: com.example

1 Configuration Parameters Dialog Box

1-580

Digital output to set on overrun

This parameter appears when the Hardware board parameter is set to an Arduino
hardware and the Enable overrun detection check box is selected.

Select the digital output pin the Arduino hardware uses to signal a task overrun.

Do not use a pin that is assigned to another block within the model.

Settings

Default: 13

 Run on Target Hardware Pane

1-581

Enable communication between two NXT bricks

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT.

You can enable direct Bluetooth communication between two NXT bricks. Enabling this
parameter makes the Bluetooth mode parameter appear.

Enabling the Enable communication between two NXT bricks parameter disables
External mode for LEGO MINDSTORMS NXT hardware.

Settings

Default: Disabled

Disabled
Disable communication between two NXT bricks.

Enabled
Enable direct Bluetooth communication between two NXT bricks.

1 Configuration Parameters Dialog Box

1-582

Bluetooth mode

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT.

If you enable the Enable communication between two NXT bricks parameter,
configure the Bluetooth device on one NXT brick to be a Bluetooth master or slave.

This parameter only applies to Bluetooth communications between two NXT bricks. It
does not apply to Bluetooth communications between the host computer and the NXT
brick.

Selecting Master makes the Bluetooth slave address parameter appear.

Settings

Default: Master

Master

The Bluetooth device on the NXT brick operates as a master. Selecting this option
enables the Slave Bluetooth address parameter.

Slave

The Bluetooth device on the NXT brick operates as a slave.

 Run on Target Hardware Pane

1-583

Slave Bluetooth address

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT and the Bluetooth mode parameter is set to Master.

Enter the address of the slave Bluetooth device on other NXT brick.

1 Configuration Parameters Dialog Box

1-584

Host name

This parameter appears when the Hardware board requires a network connection to
load the model or application to the hardware.

When you use the Support Package Installer to update the firmware on the board, the
Support Package Installer automatically gets the value of the IP address from the board
and applies it to this parameter.

If you swap boards, or change the IP address of the board, get the value of the new IP
address and enter it here.

 Run on Target Hardware Pane

1-585

User name

This parameter appears when the Hardware board parameter is set to BeagleBoard
or Raspberry Pi.

Enter the root user name for Linux® running on the BeagleBoard or Raspberry Pi™
hardware.

When you use the Support Package Installer to update the BeagleBoard or Raspberry
Pi firmware, the Support Package Installer automatically applies the value you entered
there to this parameter.

Settings

BeagleBoard Default: ubuntu

Raspberry Pi Default: pi

1 Configuration Parameters Dialog Box

1-586

Password

This parameter appears when the Hardware board parameter is set to BeagleBoard
or Raspberry Pi.

Enter the root password for Linux running on the BeagleBoard or Raspberry Pi
hardware.

When you use the Support Package Installer to update the firmware on the BeagleBoard
or Raspberry Pi hardware, the Support Package Installer automatically applies the value
you entered there to this parameter.

Settings

BeagleBoard Default: temppwd

Raspberry Pi Default: raspberry

 Run on Target Hardware Pane

1-587

Build directory

This parameter appears when the Hardware board parameter is set to BeagleBoard
or Raspberry Pi.

Enter the build directory for Linux running on the BeagleBoard or Raspberry Pi
hardware.

When you use the Support Package Installer to update the firmware on the BeagleBoard
or Raspberry Pi hardware, the Support Package Installer automatically applies the value
you entered there to this parameter.

Settings

BeagleBoard Default: /home/ubuntu

Raspberry Pi Default: /home/pi

Set host COM port

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Automatically detect or manually set the COM port your host computer uses to
communicate with the hardware board.

Warning Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings

Default: Automatically

Automatically

Let the software determine which COM Port your host computer uses.
Manually

Select this option to display the COM port number parameter.

1 Configuration Parameters Dialog Box

1-588

COM port number

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno, and the Set host COM
port parameter is set to Manually.

Manually set the number of the COM Port the host computer uses to communicate with
the hardware board, and then enter it here.

Warning Do not connect Arduino Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings

Default: 0

Analog input reference voltage

This parameter appears when the Hardware board parameter is set to Arduino Mega
2560 or Arduino Uno.

Set the reference voltage used to measure inputs to the ANALOG IN pins.

Warning Only connect an external power source to AREF while this parameter is set to
External. Connecting an external power source to AREF while this parameter is set
to any other option exposes the internal voltage references to the external voltage. This
voltage difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages greater than 5 Volts.

Do not connect Arduino Due to voltages greater than 3.3 Volts.

Voltages greater than the specified limits can damage your Arduino hardware.

Settings

Default: Default

 Run on Target Hardware Pane

1-589

Default

Use the default operating voltage of the board. For Arduino Uno and Arduino Mega
2560 the operating voltage is 5 Volts.

Internal (1.1 V)

Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.
Internal (2.56 V)

Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.
External

On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an external 0-5 volt
power supply connected to the AREF pin. This voltage should match the voltage of
the power supply connected to the Arduino hardware. If your application requires
low-noise measurements, use this option with a filtered power supply.

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate

Set the baud rate of the serial port on the Arduino hardware.

If you set Set host COM port to Manually, then set Serial 0 baud rate as described in
the “Set the COM Port and Baud Rate Manually” topic.

For information on serial ports for different Arduino boards, see “Pin Mapping on
Arduino Blocks”.

Settings

Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
128000, 500000, 1000000

IP address

Enter the IP address of the Arduino Ethernet shield.

MAC address

Enter the machine address of the Arduino Ethernet shield.

1 Configuration Parameters Dialog Box

1-590

IP address

Enter the IP address of the Arduino WiFi shield.

Service set identifier (SSID)

Enter the SSID of your network. An SSID is a unique ID consisting of 32 characters and
is used for naming wireless networks. An SSID ensures that the data you send over the
network reaches the correct destination.

WiFi encryption

The WiFi encryption that is used in the network you connect to.

Settings

Default: None

None

Select this option when you connect to a network that is not WiFi encrypted.
WPA

Select this option when you connect to a network that uses WPA WiFi encryption.
WEP

Select this option when you connect to a network that uses WEP WiFi encryption.

WPA password

This parameter appears only when you select WPA option in the WiFi encryption
parameter. Enter the WPA password of the network.

WEP key

This parameter appears only when you select WEP option in the WiFi encryption
parameter. Enter the WEP key of the network.

WEP key index

This parameter appears only when you select WEP option in the WiFi encryption
parameter. Enter the WEP key index of the WEP key.

2

Library Browser

• “Use the Library Browser” on page 2-2
• “Library Browser Keyboard Shortcuts” on page 2-7

2 Library Browser

2-2

Use the Library Browser
In this section...

“Libraries Pane” on page 2-2
“Blocks Pane” on page 2-3
“Search for Blocks in the Library Browser” on page 2-5

Libraries Pane

• “Navigate Libraries” on page 2-3
• “Add Blocks Used Recently” on page 2-3
• “Refresh the Library Browser” on page 2-3

Use the libraries pane allows you to locate blocks by navigating block libraries. The pane
displays a tree view of the libraries installed on your system. You can navigate the tree
with your mouse or keyboard. When you select a library from this structure, the contents
of that library appear in the blocks pane.

 Use the Library Browser

2-3

Navigate Libraries

You can use your keyboard or your mouse in the libraries pane to navigate the tree. Click
a library to display the contents in the blocks pane. Use the Up and Down arrow keys to
select a library with the keyboard. You can expand or collapse a library to display or hide
its sublibraries using pressing the Right andLeft arrow keys.

Add Blocks Used Recently

The Library Browser includes a library of blocks you have used most recently. In the
libraries pane, go to the bottom of the list and click Recently Used Blocks to display
the blocks in the blocks pane. Consider selecting from the most recently used blocks when
you:

• Want to add a type of block that you have recently added
• Are working on multiple models that share several of the same types of blocks
• Do not know which model contains the type of block you want to copy

Note: Only blocks added from the Library Browser are reflected in the Recently Used
Blocks library.

Refresh the Library Browser

To refresh the libraries displayed in the Library Browser, right-click in the Libraries
pane and select Refresh Library Browser. The Library Browser updates to reflect any
libraries that were added to or deleted from the MATLAB path since the library browser
was last opened or refreshed.

You need to refresh your library browser if you:

• Make changes to existing libraries or resave them in .slx file format.
• Update repository information for a library.
• Move or delete your library files.
• Add a new library to Simulink.
• Change your Library Browser customizations. See “Customize the Library Browser”.

Blocks Pane

• “Set Zoom Level” on page 2-5

2 Library Browser

2-4

• “Create an Instance of a Library Block in a Model” on page 2-5
• “Display a Library Block Description, Parameters, and Help” on page 2-5
• “Navigate Libraries” on page 2-5

The blocks pane in the Library Browser displays the contents of the library selected
in the libraries pane. See “Libraries Pane” on page 2-2 for more information. You
can use the blocks pane to browse the contents of the selected library, to view block
parameters or help, and to create instances of library blocks in models.

 Use the Library Browser

2-5

Set Zoom Level

You can zoom in or out on the blocks pane in the Library Browser. To zoom in, click
anywhere in the blocks pane and press Ctrl++. To zoom out, press Ctrl+-. To reset the
zoom level to the default, press Alt+1.

Create an Instance of a Library Block in a Model

To create an instance of a library block in an open model, select the block in the blocks
pane and drag it into the model's window.

To create an instance of a library block in the most recently selected open model, right-
click the block in the blocks pane and select Add block to model <model_name> from
the context menu. If no model is open, Simulink gives the option to add the block to a
new model.

Display a Library Block Description, Parameters, and Help

To display the description of a block, hover over the block. A tooltip appears that shows
the block library path and its description.

To view the block parameters, double-click the block in the blocks pane or select Block
parameters from the block's context menu. Viewing the parameters helps you to
understand a block before you use it.

To display help for a library block, right-click the block and then select Help for the
<name> block from the context menu.

Navigate Libraries

To navigate into a library in the blocks pane, double-click the library. To return to the
parent of an item displayed in the blocks pane, press Esc.

Search for Blocks in the Library Browser

1 Enter the string in the search text box or select from the recent search list.

2 Use the search button menu to specify the search options you want to use, e.g.,
match whole words.

2 Library Browser

2-6

3 Press Enter to start the search.

The Library Browser searches the libraries installed on your system whose names or
descriptions contain the search string specified. The blocks pane displays the blocks
found by the tool grouped by library. A hyperlink at the top of each group displays the
name of the top-level library of the found blocks, the number of blocks found in the
library, and a button that allows you to collapse or display the search results for the
library.

To view more information about a block in the search results, hover your mouse over it.
A pop up appears that shows the block’s library path and description, highlighting the
search string. To view a block in the Library view, select Select in library view from
the block context menu.

 Library Browser Keyboard Shortcuts

2-7

Library Browser Keyboard Shortcuts

Task Shortcut

Open a model Ctrl+O
Open Library Browser from a
model

Ctrl+Shift+L

Move selection down in the
Blocks or Libraries pane

Down arrow

Move selection up in the Blocks
or Libraries pane

Up arrow

Expand a node in the Libraries
pane

Right arrow

Collapse a node in the Libraries
pane

Left arrow

Refresh Libraries pane F5
Show parent library in Blocks
pane

Esc

Select a block found with the
search tool in the Blocks pane

Ctrl+R

Insert the selected block in a
new model

Ctrl+I

Increase zoom in the Blocks
pane

Ctrl++

Decrease zoom in the Blocks
pane

Ctrl+-

Reset zoom to default in the
Blocks pane

Alt+1

Find a block Ctrl+F
Close Ctrl+W

3

Signal Properties Dialog Box

• “Signal Properties Dialog Box Overview” on page 3-2
• “Signal Properties Controls” on page 3-4
• “Logging and Accessibility Options” on page 3-6
• “Code Generation Options” on page 3-8
• “Data Transfer Options for Concurrent Execution” on page 3-9
• “Documentation Options” on page 3-11

3 Signal Properties Dialog Box

3-2

Signal Properties Dialog Box Overview

The Signal Properties dialog box lets you display and edit signal properties. To display
the dialog box, either

• Select the line that represents the signal whose properties you want to set and then
choose Signal Properties from the signal's context menu or from the Simulink Edit
menu

or
• Select a block that outputs or inputs the signal and from the block's context menu,

select Signals & Ports and then either Input Port Signal Properties or Output
Port Signal Properties, then select the port to which the signal is connected from
the resulting menu.

The Signal Properties dialog box appears.

The dialog box includes the following controls.

• “Signal Properties Controls” on page 3-4
• “Logging and Accessibility Options” on page 3-6

 Signal Properties Dialog Box Overview

3-3

• “Code Generation Options” on page 3-8
• “Data Transfer Options for Concurrent Execution” on page 3-9
• “Documentation Options” on page 3-11

3 Signal Properties Dialog Box

3-4

Signal Properties Controls

Signal name

Name of signal.

Signal name must resolve to Simulink signal object

Specifies that either the base MATLAB workspace or the model workspace must contain
a Simulink.Signal object with the same name as this signal. Simulink software
displays an error message if it cannot find such an object when you update or simulate
the model containing this signal.

Note: Simulink.Signal objects in the model workspace must have their storage class
set to Auto. See “Model Workspaces” for more information.

When Signal name must resolve to Simulink signal object is enabled, a signal
resolution icon appears by default to the left of any label on the signal. The icon looks like
this:

See “Signal to Object Resolution Indicator” for more information.

Show propagated signals

Note This option is available only for signals that originate from blocks that support
signal label propagation. For a list of the blocks, see “Blocks That Support Signal Label
Propagation”.

Enabling this parameter causes Simulink to create a propagated signal label.

For example, in the following model, the output signal from the Subsystem block is
configured for signal label propagation. The propagated signal label (<const>) is based
on the name of the upstream output signal of the Constant block (const).

 Signal Properties Controls

3-5

For more information, see “Signal Label Propagation”.

3 Signal Properties Dialog Box

3-6

Logging and Accessibility Options

Select the Logging and accessibility tab on the Signal Properties dialog box to
display controls that enable you to specify signal logging and accessibility options for this
signal.

Log signal data

Select this option to cause Simulink software to save this signal's values to the MATLAB
workspace during simulation. See “Export Signal Data Using Signal Logging” for details.

Test point

Select this option to designate this signal as a test point. See “Test Points” for details.

Logging name

This pair of controls, consisting of a list box and an edit field, specifies the name
associated with logged signal data.

Simulink software uses the signal's signal name as its logging name by default. To
specify a custom logging name, select Custom from the list box and enter the custom
name in the adjacent edit field.

 Logging and Accessibility Options

3-7

Data

This group of controls enables you to limit the amount of data that Simulink software
logs for this signal.

The options are as follows.

Limit data points to last

Discard all but the last N data points where N is the number entered in the adjacent edit
field.

Decimation

Log every Nth data point where N is the number entered in the adjacent edit field. For
example, suppose that your model uses a fixed-step solver with a step size of 0.1 s. if
you select this option and accept the default decimation value (2), Simulink software
records data points for this signal at times 0.0, 0.2, 0.4, etc.

3 Signal Properties Dialog Box

3-8

Code Generation Options

The following controls set properties used by Simulink Coder to generate code from the
model. You can ignore them if you are not going to generate code from the model.

Package

Select a package that defines the storage class or custom storage class that you want to
apply.

To use the built-in Simulink Coder storage classes, select Simulink. For more
information, see “Apply Storage Classes Directly to Signal Lines and Block States” in the
Simulink Coder documentation.

If you have an Embedded Coder license, you can use custom storage classes. Select
the built-in package Simulink or another package. Click Refresh to load any other
available packages, including user-defined packages, on the MATLAB path. For more
information, see “Apply Custom Storage Classes Directly to Signal Lines and Block
States” in the Embedded Coder documentation.

The default value, ---None---, sets internal storage class attributes instead of creating
an embedded signal object.

Storage class

Select the storage class of this signal from the list. See “Control Signals and States in
Code by Applying Storage Classes” and “Storage Classes for Data Store Memory Blocks”
for information on how to use the listed options.

Storage type qualifier

Enter a storage type qualifier for this signal such as const or volatile.

 Data Transfer Options for Concurrent Execution

3-9

Data Transfer Options for Concurrent Execution

This tab displays the data transfer options for configuring models for targets with
multicore processors. To enable this tab, in the Model Explorer for the model, right-click
Configuration, then select the Show Concurrent Execution option.

In this section...

“Specify data transfer settings” on page 3-9
“Data transfer handling option” on page 3-9
“Extrapolation method (continuous-time signals)” on page 3-9
“Initial condition” on page 3-9

Specify data transfer settings

Enable custom data transfer settings. For more information, see “Configuring Data
Transfer Communications”.

Data transfer handling option

Select a data transfer handling option. For more information, see “Configuring Data
Transfer Communications”.

Extrapolation method (continuous-time signals)

Select a data transfer extrapolation method. For more information, see “Configuring
Data Transfer Communications”.

Initial condition

For discrete signals, this parameter specifies the initial input on the reader side of the
data transfer. It applies for data transfer types Ensure Data Integrity Only and
Ensure deterministic transfer (maximum delay). Simulink does not allow this
value to be Inf or NaN.

For continuous signals, the extrapolation method of the initial input on the reader side
of the data transfer uses this parameter. It applies for data transfer types Ensure Data

3 Signal Properties Dialog Box

3-10

Integrity Only and Ensure deterministic transfer (maximum delay).
Simulink does not allow this value to be Inf or NaN.

For more information, see “Configuring Data Transfer Communications”.

 Documentation Options

3-11

Documentation Options

Description

In this field, enter a description of the signal.

The description that you specify in the Signal Properties dialog box does not appear in
the generated code. To add a signal description as a comment in the generated code, you
must use a Simulink signal object. For more information, see Simulink.Signal.

Document link

In the field that displays documentation for the signal, enter a MATLAB expression. To
display the documentation, click Document Link. For example, entering the expression

web(['file:///' which('foo_signal.html')])

causes the MATLAB software default Web browser to display foo_signal.html when
you click the field label.

4

Simulink Preferences Window

• “Set Simulink Preferences” on page 4-2
• “Main Pane” on page 4-3
• “Display Defaults for New Models Pane” on page 4-29
• “Font Defaults for New Models Pane” on page 4-36
• “Editor Defaults Pane” on page 4-37
• “Data Management Defaults Pane” on page 4-42
• “Configuration Defaults Pane” on page 4-44

4 Simulink Preferences Window

4-2

Set Simulink Preferences

You can use the Simulink Preferences window to specify a wide range of options and
default behaviors. The Simulink Preferences window comprises the following panes:

• Main Pane

Set preferences for file change, autosave, version notifications, and other behaviors
relating to model files

• “Display Defaults for New Models Pane” on page 4-29

Configure display options for the Model Browser, block connection lines and port data
types.

• “Font Defaults for New Models Pane” on page 4-36

Configure font options for blocks, lines and annotations.
• “Editor Defaults Pane” on page 4-37

Configure the Simulink Editor.
• “Data Management Defaults Pane” on page 4-42

Configure for exporting variables to MATLAB scripts.
• “Configuration Defaults Pane” on page 4-44

Edit the template Configuration Parameters to be used as defaults for new models.

 Main Pane

4-3

Main Pane

In this section...

“Simulink Preferences Window Overview” on page 4-4
“Model File Change Notification” on page 4-7
“Updating or simulating the model” on page 4-8

4 Simulink Preferences Window

4-4

In this section...

“Action” on page 4-9
“First editing the model” on page 4-10
“Saving the model” on page 4-11
“Autosave” on page 4-12
“Save before updating or simulating the model” on page 4-13
“Save backup when overwriting a file created in an older version of Simulink” on page
4-14
“Warn when opening Model blocks with Normal Mode Visibility set to off” on page
4-16
“Notify when loading an old model” on page 4-17
“Do not load models created with a newer version of Simulink” on page 4-18
“Do not load models that are shadowed on the MATLAB path” on page 4-19
“Save a thumbnail image inside SLX files” on page 4-20
“Callback tracing” on page 4-21
“Open the sample time legend whenever sample time display is changed” on page
4-22
“File generation control” on page 4-23
“Simulation cache folder” on page 4-24
“Code generation folder” on page 4-25
“Print” on page 4-25
“Export” on page 4-26
“Clipboard” on page 4-27
“File format for new models and libraries” on page 4-27

Simulink Preferences Window Overview

The Simulink Preferences window comprises the following panes:

• Main Pane

Set preferences for file change, autosave, version notifications, and other behaviors
relating to model files

 Main Pane

4-5

• “Display Defaults for New Models Pane” on page 4-29

Configure display options for the Model Browser, block connection lines and port data
types.

• “Font Defaults for New Models Pane” on page 4-36

Configure font options for blocks, lines and annotations.
• Editor Defaults“Editor Defaults Pane” on page 4-37

Configure the Simulink Editor.
• “Data Management Defaults Pane” on page 4-42

Configure for exporting variables to MATLAB scripts.
• “Configuration Defaults Pane” on page 4-44

Edit the template Configuration Parameters to be used as defaults for new models.

Click items in the tree to select panes.

Configuration

1 On the root level pane, select the check boxes to configure preferences.
2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

Your settings affect the behavior of all Simulink models, including those currently open,
and all subsequent models. Your preference settings are preserved for the next time you
use the software.

See Also

• “Main Pane” on page 4-3
• Model File Change Notification
• “Display Defaults for New Models Pane” on page 4-29
• “Font Defaults for New Models Pane” on page 4-36
• “Data Management Defaults Pane” on page 4-42
• “Configuration Defaults Pane” on page 4-44

4 Simulink Preferences Window

4-6

 Main Pane

4-7

Model File Change Notification

Use these preferences to specify notifications if the model has changed on disk when you
update, simulate, edit or save the model. When updating or simulating, you can choose
the action to take: warn, error, reload if unmodified, or show a dialog box where you can
choose to reload or ignore. For more information, see Model File Change Notification.

The frame contains these controls:

• “Updating or simulating the model” on page 4-8
• “Action” on page 4-9
• “First editing the model” on page 4-10
• “Saving the model” on page 4-11

4 Simulink Preferences Window

4-8

Updating or simulating the model

Specify whether to notify if the model has changed on disk when updating or simulating
the model.

Settings

Default: On

 On
Notify if the model has changed on disk when updating or simulating the model.
Select the action to take in the Action list.

 Off
Do not notify if the model has changed on disk when updating or simulating the
model.

Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function slIsFileChangedOnDisk.

Dependency

This parameter enables Action.

Command-Line Information
Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenUpdating
Value: true | false | 1 | 0
Default: true

See Also

Model File Change Notification

 Main Pane

4-9

Action

Select what action to take if the file has changed on disk since it was loaded.

Settings

Default: Warning

Warning

Displays a warning in MATLAB command window
Error

Displays an error, at the MATLAB command window if simulating from the
command line, or if simulating from a menu item, in the Simulation Diagnostics
window.

Reload model (if unmodified)

Reloads if the model is unmodified. If the model is modified, you see the prompt
dialog.

Show prompt dialog

Shows prompt dialog. In the dialog, you can choose to close and reload, or ignore the
changes.

Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function slIsFileChangedOnDisk.

Dependencies

This parameter is enabled by the parameter Updating or simulating the model.

Command-Line Information
Parameter: MdlFileChangedOnDiskHandling
Type: string
Value: 'Warning' | 'Error' | 'Reload model (if unmodified)' | 'Show
prompt dialog'

Default: 'Warning'

See Also

Model File Change Notification

4 Simulink Preferences Window

4-10

First editing the model

Specify whether to notify if the file has changed on disk when editing the model.

Settings

Default: On

 On
Displays a warning if the file has changed on disk when you modify the block
diagram. Any graphical operation that modifies the block diagram (e.g., adding a
block) causes a warning dialog to appear. Any command-line operation that causes
the block diagram to be modified (e.g., a call to set_param) will result in a warning
like this at the command line:

Warning: Block diagram 'mymodel' is being edited but file has

changed on disk since it was loaded. You should close and

reload the block diagram.

 Off
Do not check for changes on disk when first editing the model.

Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function slIsFileChangedOnDisk.

Command-Line Information
Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenEditing
Value: true | false | 1 | 0
Default: true

See Also

Model File Change Notification

 Main Pane

4-11

Saving the model

Specify whether to notify if the file has changed on disk when saving the model.

Settings

Default: On

 On
Notify if the file has changed on disk when you save the model.

• The save_system function displays an error, unless the
OverwriteIfChangedOnDisk option is used.

• Saving the model by using the menu (File > Save) or a keyboard shortcut causes
a dialog to be shown. In the dialog, you can choose to overwrite, save with a new
name, or cancel the operation.

 Off
Do not check for changes on disk when saving the model.

Tip

To programmatically check whether the model has changed on disk since it was loaded,
use the function slIsFileChangedOnDisk.

Command-Line Information
Parameter: MDLFileChangedOnDiskChecks
Type: struct, field name: CheckWhenSaving
Value: true | false | 1 | 0
Default: true

See Also

Model File Change Notification

4 Simulink Preferences Window

4-12

Autosave

Use the Autosave preferences to specify whether to automatically save a backup copy of
the model before updating or simulating, or when overwriting with a newer version of
Simulink.

For more information, see these controls:

• “Save before updating or simulating the model” on page 4-13
• “Save backup when overwriting a file created in an older version of Simulink” on page

4-14

 Main Pane

4-13

Save before updating or simulating the model

Specify whether to automatically save a backup copy of the model before updating or
simulating.

Settings

Default: On

 On
If the model has unsaved changes, automatically save a backup copy of the model
before updating or simulating. This autosave copy can be useful for crash recovery.

The copy is saved in the same directory as the model, with the name
MyModel.slx.autosave or MyModel.mdl.autosave.

 Off
Do not automatically save a copy before updating or simulating.

Tips

• If you open or load a model that has a more recent autosave copy available, then after
the model loads, a dialog box appears to prompt you whether to restore, ignore, or
discard the autosave copy. If there are multiple models involved, then the following
nonmodal Model Recovery dialog appears.

For each model in the list, you can select a check box to specify whether to Restore,
Delete Autosave, or Ignore. Or you can click the Restore All, Delete All or
Ignore All button to select that option for all listed models.

4 Simulink Preferences Window

4-14

Option Result

Restore Overwrite the original model file with the autosave copy,
and delete the autosave copy. Simulink will close the
model and reload from the restored file. If you select
the check box to Keep a copy of original model file,
you can save copies of the original model files named
MyModel.slx.original or MyModel.mdl.original.

Delete Autosave Delete the autosave copy.
Ignore Leave the model and the autosave copy untouched. This

setting is the default. The next time you open the model,
the Model Recovery dialog will reappear and you can
choose to restore or delete autosave files.

• If you deliberately close a modified model, any autosave copy is deleted.
• Autosave does not occur for models that are part of the MATLAB installation, so you

will not create autosave copies of those models.
• Autosave does not occur if the autosave file or location is read only.
• Autosave does not occur in Parallel Computing Toolbox™ workers.

Caution If a segmentation violation occurred, then the last autosave file for the model
reflects the state of the autosave data prior to the segmentation violation. Because
Simulink models might be corrupted by a segmentation violation, Simulink does not
autosave a model after a segmentation violation occurs.

Command-Line Information
Parameter: AutoSaveOptions
Type: struct, field name: SaveOnModelUpdate
Value: true | false | 1 | 0
Default: true

Save backup when overwriting a file created in an older version of
Simulink

Specify whether to automatically save a backup copy of the model when overwriting with
a newer version of Simulink.

 Main Pane

4-15

Settings

Default: On

 On
If saving the model with a newer version of Simulink, automatically save a backup
copy of the model. This backup copy can be useful for recovering the original file in
case of accidental overwriting with a newer version.

The backup copy is saved in the same directory as the model, with the name
MyModel.slx.Version or MyModel.mdl.Version, where Version is the last
version that saved the model, e.g., R2010a.

 Off
Do not automatically save a backup copy when overwriting a model with a newer
version of Simulink.

Tips

To recover the original model, rename the backup copy to MyModel.mdl or
MyModel.slx by deleting the Version suffix.

Command-Line Information
Parameter: AutoSaveOptions
Type: struct, field name: SaveBackupOnVersionUpgrade
Value: true | false | 1 | 0
Default: true

4 Simulink Preferences Window

4-16

Warn when opening Model blocks with Normal Mode Visibility set to off

Show a warning when you open a model from Model blocks that have Normal Mode
Visibility set to off.

All instances of a Normal mode referenced model are part of the simulation. However,
Simulink displays only one instance in a model window; that instance is determined
by the Normal Mode Visibility setting. Normal mode visibility includes the display of
Scope blocks and data port values. When you open a model from a Model block that has
Normal Mode Visibility set to off, the referenced model shows data from the instance of
that model has Normal Mode Visibility set to on.

Settings

Default: On

 On
After simulation, Simulink displays a warning if you try to open a referenced model
from a Model block that has Normal Mode Visibility set to off. Simulink does not
open the instance referenced by that Model block, but instead opens the instance that
has Normal Mode Visibility set to on. The instance that has Normal Mode Visibility
set to on has different input data sources than the instance referenced by the Model
block that you opened.

 Off
No warning displayed if, after simulation, you try to open a referenced model from a
Model block that has Normal Mode Visibility set to off.

Tips

• The warning box that Simulink displays includes an option to suppress the display of
the warning in the future. If you enable that option, this preference is set to off. Use
this preference to resume the display of that warning.

• For more information, see “Normal Mode Visibility”.

 Main Pane

4-17

Notify when loading an old model

Specify whether to notify when loading a model last saved in a older version of Simulink
software.

Settings

Default: Off

 On
Print a message in the command window when loading a model last saved in an old
version of Simulink software.

 Off
No notification when loading old models.

Tips

• Run the Upgrade Advisor to convert the block diagram to the format of the current
version of Simulink software.

• For advice on upgrading a model to the current version of Simulink software, see
“Model Upgrades”.

Command-Line Information
Parameter: NotifyIfLoadOldModel
Type: string
Value: 'on' | 'off'
Default: off

4 Simulink Preferences Window

4-18

Do not load models created with a newer version of Simulink

Specify whether to load a model last saved in a newer version of Simulink software.

Settings

Default: On

 On
Do not load any model last saved in a newer version of Simulink software, and print
an error message in the command window.

 Off
Load models last saved in a newer version of Simulink software, and print a warning
message in the command window.

Tip

If possible, use the Save As command to convert the block diagram to the format of
the desired version of Simulink software. The Save As command allows you to save a
model created with the latest version of the Simulink software in formats used by earlier
versions. See “Export a Model to a Previous Simulink Version”.

Command-Line Information
Parameter: ErrorIfLoadNewModel
Type: string
Value: 'on' | 'off'
Default: on

 Main Pane

4-19

Do not load models that are shadowed on the MATLAB path

Specify whether to load a model that is shadowed by another file of the same name
higher on the MATLAB path.

Settings

Default: Off

 On
Do not load any model that is shadowed by another file of the same name higher
on the MATLAB path, and print an error message in the command window. This
preference applies when you try to open or load a model or library using either of
these methods:

• Select a file in the current folder browser
• Call open_system or load_system with a path to a file in a different folder to

the current folder

 Off
Load shadowed models, and print a warning message in the command window.

Tip

For more information, see “Shadowed Files ”.

Command-Line Information
Parameter: ErrorIfLoadShadowedModel
Type: string
Value: 'on' | 'off'
Default: off

4 Simulink Preferences Window

4-20

Save a thumbnail image inside SLX files

Specify whether to save a small screenshot of the model to display in the Current Folder
browser preview pane.

Settings

Default: On

 On
When saving the model, include a small screenshot of the model inside the SLX file.
You can view the screenshot for a selected model in the Current Folder browser
preview pane.

 Off
Do not save a screenshot of the model.

Tip

If your model is very large and you want to reduce the time taken to save the model, then
you can turn this preference off to avoid saving thumbnail model images.

Command-Line Information
Parameter: SaveSLXThumbnail
Type: string
Value: 'on' | 'off'
Default: on

 Main Pane

4-21

Callback tracing

Specify whether to display the model callbacks that Simulink software invokes when
simulating a model.

Settings

Default: Off

 On
Display the model callbacks in the MATLAB command window as they are invoked.

Callback tracing allows you to determine the callbacks the software invokes, and in
what order, when you open or simulate a model.

 Off
Do not display model callbacks.

Command-Line Information
Parameter: CallbackTracing
Type: string
Value: 'on' | 'off'
Default: 'off'

4 Simulink Preferences Window

4-22

Open the sample time legend whenever sample time display is changed

Specify whether to display the Sample Time Legend whenever Sample Time Display is
changed.

Settings

Default: On

 On
Display the Sample Time Legend whenever you change Sample Time Display by
selecting Colors, Annotations, or All from the Sample Time Display submenu. The
model diagram is updated and the legend opens.

 Off
Do not display the Sample Time Legend whenever Sample Time Display is changed.

Command-Line Information
Parameter: OpenLegendWhenChangingSampleTimeDisplay
Type: string
Value: 'on' | 'off'
Default: 'on'

 Main Pane

4-23

File generation control

Use these preferences to control the locations at which model build artifacts are placed.
By default, build artifacts are placed in the current working folder (pwd) at the time
update diagram or code generation is initiated. For more information, see these controls:

• “Simulation cache folder” on page 4-24
• “Code generation folder” on page 4-25

4 Simulink Preferences Window

4-24

Simulation cache folder

Specify root folder in which to put model build artifacts used for simulation.

Settings

Default:''

Enter a string specifying a valid folder path. If no path is specified, build artifacts are
placed in the current working folder (pwd) at the time update diagram is initiated.

Tip

You can specify an absolute or relative path to the folder. For example:

• C:\Work\mymodelsimcache and /mywork/mymodelsimcache specify absolute
paths.

• mymodelsimcache is a path relative to the current working folder (pwd). The
software converts a relative path to a fully qualified path at the time the preference is
set. For example, if pwd is '/mywork', the result is /mywork/mymodelsimcache.

• ../test/mymodelsimcache is a path relative to pwd. If pwd is '/mywork', the
result is /test/mymodelsimcache.

Command-Line Information
Parameter: CacheFolder
Type: string
Value: valid folder path
Default: ''

See Also

“Simulation Target Output File Control”

 Main Pane

4-25

Code generation folder

Specify root folder in which to put Simulink Coder code generation files.

Settings

Default:''

Enter a string specifying a valid folder path. If no path is specified, build artifacts are
placed in the current working folder (pwd) at the time code generation is initiated.

Tip

You can specify an absolute or relative path to the folder. For example:

• C:\Work\mymodelgencode and /mywork/mymodelgencode specify absolute paths.
• mymodelgencode is a path relative to the current working folder (pwd). The software

converts a relative path to a fully qualified path at the time the preference is set. For
example, if pwd is '/mywork', the result is /mywork/mymodelgencode.

• ../test/mymodelgencode is a path relative to pwd. If pwd is '/mywork', the result
is /test/mymodelgencode.

Command-Line Information
Parameter: CodeGenFolder
Type: string
Value: valid folder path
Default: ''

See Also

“Control the Location for Generated Files” in the Simulink Coder documentation

Print

Use a white canvas (background) or the canvas color of the model when printing a model.

Settings

Default: White

White

Use a white canvas.

4 Simulink Preferences Window

4-26

Match Canvas Color

Match the canvas color of the model.

Command-Line Information
Parameter: PrintBackgroundColorMode
Type: string
Value: White | MatchCanvas
Default: White

See Also

“Print and Export Models”

Export

Match the canvas (background) color of the model, use a white canvas, or use a
transparent canvas for model files that you export to another file format, such as .png or
.jpeg.

Settings

Default: Match Canvas Color

Match Canvas Color

Match the canvas color of the model.
White

Use a white canvas.
Transparent

Use a transparent canvas, so that whatever is behind the canvas image shows
through.

Command-Line Information
Parameter: ExportBackgroundColorMode
Type: string
Value: White | MatchCanvas | Transparent
Default: MatchCanvas

See Also

“Export Models to Third-Party Applications”

 Main Pane

4-27

Clipboard

Match the canvas (background) color of the model, use a white canvas, or use a
transparent canvas for model files that you export to another application.

Settings

Default: Match Canvas Color

Match Canvas Color

Match the canvas color of the model.
White

Use a white canvas.
Transparent

Use a transparent canvas, so that whatever is behind the canvas image shows
through.

Command-Line Information
Parameter: ClipboardBackgroundColorMode
Type: string
Value: White | MatchCanvas | Transparent
Default: MatchCanvas

See Also

“Export Models to Image File Formats”

File format for new models and libraries

Settings

Default:SLX

Specify the default file format for new models and libraries.

MDL

Save new models and libraries in MDL format.
SLX

Save new models and libraries in SLX format.

4 Simulink Preferences Window

4-28

Command-Line Information
Parameter: ModelFileFormat
Type: string
Value: 'mdl' | 'slx'
Default: slx

Tips

• You can choose model file format when using Save As.
• To set this preference at the command-line, use one of the following commands:

set_param(0,'ModelFileFormat','slx')

set_param(0,'ModelFileFormat','mdl')

• For information about the SLX model file format, see “ Save Models in the SLX File
Format”.

 Display Defaults for New Models Pane

4-29

Display Defaults for New Models Pane

In this section...

“Simulink Display Defaults Overview” on page 4-29
“Show masked subsystems” on page 4-31
“Show library links” on page 4-32
“Wide nonscalar lines” on page 4-34
“Show port data types” on page 4-35

Simulink Display Defaults Overview

Configure display options for the Model Browser, block connection lines and port data
types.

Configuration

1 Select check boxes to configure display properties that will be applied to all new
block diagrams.

2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

4 Simulink Preferences Window

4-30

These values will be inherited by new block diagrams.

See Also

• “Model Browser” (Windows only)
• Signal Display Options

 Display Defaults for New Models Pane

4-31

Show masked subsystems

Specify whether masked subsystems and their contents are shown in the Model Browser
(Windows only).

Settings

Default: Off

 On
Display masked subsystems and their contents in the Model Browser.

 Off
Do not display masked subsystems and their contents in the Model Browser.

Command-Line Information
Parameter: BrowserLookUnderMasks
Type: string
Value: 'on' | 'off'
Default: 'off'

4 Simulink Preferences Window

4-32

Show library links

Specify whether library links and their contents are shown in the Model Browser
(Windows only).

Settings

Default: Off

 On
Display library links and their contents in the Model Browser.

 Off
Do not display library links and their contents in the Model Browser.

Command-Line Information
Parameter: BrowserShowLibraryLinks
Type: string
Value: 'on' | 'off'
Default: 'off'

 Display Defaults for New Models Pane

4-33

4 Simulink Preferences Window

4-34

Wide nonscalar lines

Specify whether to show thick lines for nonscalar connections between blocks.

Settings

Default: Off

 On
Show thick lines for nonscalar connections between blocks

 Off
Do not show thick lines for nonscalar connections between blocks

Command-Line Information
Parameter: WideVectorLines
Type: string
Value: 'on' | 'off'
Default: 'off'

 Display Defaults for New Models Pane

4-35

Show port data types

Specify whether to show the data type on each block port

Settings

Default: Off

 On
Display the data type for each port on each block.

 Off
Do not display data types on block ports.

Command-Line Information
Parameter: ShowPortDataTypes
Type: string
Value: 'on' | 'off'
Default: 'off'

4 Simulink Preferences Window

4-36

Font Defaults for New Models Pane

Simulink Font Defaults Overview

Configure font options for blocks, lines and annotations.

Configuration

1 Use the drop-down lists to specify font types, styles, and sizes that will be applied to
all new block diagrams.

2 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These properties will be inherited by new block diagrams.

 Editor Defaults Pane

4-37

Editor Defaults Pane

In this section...

“Simulink Editor Defaults Overview” on page 4-38
“Use classic diagram theme” on page 4-38
“Line crossing style” on page 4-39
“Scroll wheel controls zooming” on page 4-39

4 Simulink Preferences Window

4-38

In this section...

“Enable smart editing features” on page 4-39
“File Toolbar” on page 4-40
“Print” on page 4-40
“Cut/Copy/Paste” on page 4-40
“Undo/Redo” on page 4-40
“Browse Back/Forward/Up” on page 4-40
“Library/Model Configuration/Model Explorer” on page 4-40
“Refresh Blocks” on page 4-40
“Update Diagram” on page 4-40
“Simulation” on page 4-40
“Fast Restart” on page 4-41
“Debug Model” on page 4-41
“Model Advisor” on page 4-41
“Build” on page 4-41
“Find” on page 4-41

Simulink Editor Defaults Overview

Configure the Simulink Editor.

These options affect the behavior of all Simulink models. The options relate to the how
models appear in terms of the visual theme, the scroll wheel behavior, and the toolbar
configuration.

Use classic diagram theme

Cause Simulink diagrams to appear in the Simulink Editor using the visual theme that
was used in the Simulink Editor before R2012b.

If you check Use classic diagram theme, Simulink does not display content preview.
For details, see “Preview Content of Hierarchical Items”.

 Editor Defaults Pane

4-39

Line crossing style

Change the default display for signal lines that cross. By default, straight signal lines
that cross each other but are not connected display a slight gap before and after the
vertical line where it intersects the horizontal line. This display style is Tunnel.

The Line Hop format shows a bend where the vertical line intersects the horizontal line.
Simulink adjusts the side the bend appears on to avoid overlapping with a block icon. If
having the bend on either side overlaps with a block, Simulink uses a solid line.

The None format uses solid lines. This format can provide a slight performance
improvement for updating very large models. If you enable the Simulink Preferences >
Editor Defaults > Use classic diagram theme preference, Simulink uses a solid line.

Scroll wheel controls zooming

Use the scroll wheel on the mouse to zoom in and out without the Ctrl key modifier.
On Macintosh platforms with an Apple Magic Trackpad, if you enable Scroll wheel
controls zooming, a panning gesture causes zooming.

Enable smart editing features

Use smart editing cues to edit a model from within the diagram, without opening
separate dialog boxes. Use options based on the context of your most recent editing
operations. These features include:

• Quick insert — Add a block to a model by typing a block name.
• Hot parameters — Enter a parameter value for a block that you add using quick

insert, without opening the block parameters dialog box.
• Tear-off block addition — Insert a complementary block from a tear-off interface of

a block. For example, when you add a GoTo block, you can use a tear-off to insert a
corresponding From block.

• Marquee selection actions — Perform actions on a marquee selection (multiple
selected objects in an area of a model), such as creating different kinds of subsystem
from the selected blocks.

By default, these features are enabled.

4 Simulink Preferences Window

4-40

File Toolbar

Specify whether to display the New/Save, the New/Open/Save, or no file toolbar.

Print

Specify show or hide the Print toolbar.

Cut/Copy/Paste

Specify show or hide the Cut/Copy/Paste toolbar.

Undo/Redo

Specify show or hide the Undo/Redo toolbar.

Browse Back/Forward/Up

Specify show or hide the Browse Back/Forward/Up toolbar.

Library/Model Configuration/Model Explorer

Specify show or hide the Library/Model Configuration/Model Explorer toolbar.

Refresh Blocks

Specify show or hide the Refresh Blocks toolbar.

Update Diagram

Specify show or hide the Update Diagram toolbar.

Simulation

Specify show or hide the Simulation toolbar.

 Editor Defaults Pane

4-41

Fast Restart

Specify show or hide the Fast Restart button on the Simulation toolbar.

Debug Model

Specify show or hide the Debug Model toolbar.

Model Advisor

Specify show or hide the Model Advisor toolbar.

Build

Specify show or hide the Build toolbar.

Find

Specify show or hide the Find toolbar.

4 Simulink Preferences Window

4-42

Data Management Defaults Pane

In this section...

“Simulink Data Management Defaults Overview” on page 4-42
“Package” on page 4-42

Simulink Data Management Defaults Overview

Configure options for setting the default package that will be used on the Code
Generation pane of Signal Properties dialog boxes.

Package

Set the default package that will be used on the Code Generation pane of Signal
Properties dialog boxes.

Settings

Default: Simulink

• Click Refresh to load all packages that are on the MATLAB path.

 Data Management Defaults Pane

4-43

Command-Line Information
Parameter: DefaultDataPackage
Type: string
Value: any valid value
Default: Simulink

4 Simulink Preferences Window

4-44

Configuration Defaults Pane

Simulink Configuration Defaults Overview

On the main Configuration Defaults pane you can edit the description of your template
configuration set.

Expand the tree under Configuration Defaults to edit the template Configuration
Parameters to be used as defaults for new models.

Configuration

1 Expand the tree under Configuration Defaults to edit the template for default
Configuration Parameters.

2 Edit Configuration Parameters that you want to apply to all new block diagrams.
3 Close the window to apply your changes.

Click Apply to apply your changes and keep the window open.

These values will be inherited by new block diagrams.

See Also

“Configuration Parameters Dialog Box Overview” on page 1-2

5

Simulink Mask Editor

• “Mask Editor Overview” on page 5-2
• “Icon & Ports Pane” on page 5-5
• “Parameters & Dialog Pane” on page 5-12
• “Initialization Pane” on page 5-28
• “Documentation Pane” on page 5-32

5 Simulink Mask Editor

5-2

Mask Editor Overview

A mask is a custom user interface for a block that hides the block’s contents, making it
appear to the user as an atomic block with its own icon and parameter dialog box. The
Mask Editor, helps you to:

• Design mask dialog box containing any of the Parameter, Display, and Action
dialog controls.

• Promote all or some of the block parameters from underlying blocks.
• Add custom icons to a block mask. The mask icon can change dynamically based on

changes in parameter values.
• Add initialization code and initialize variables. Variables initialized by the mask can

be passed along to the underlying block parameters.
• Create mask callbacks that run MATLAB code when mask dialog is opened,

parameters are changed, you do an update diagram, or simulate a model.
• Provide mask documentation and set mask block type.

For information on creating or editing masks in Simulink, see “Mask a Block”.

You can open the Mask Editor for a block, in one of following ways:

• To create a new mask, select the block to be masked, and from the Diagram menu,
select Mask > Create Mask. You can also right click the block context menu, and
select Mask > Create Mask.

• To edit an existing mask, select the masked block, and from the Diagram menu,
select Mask > Edit Mask. You can also right click the block context menu, and select
Mask > Edit Mask.

• You can also open the Mask Editor using the keyboard shortcut Ctrl+M (on all
platforms, including Macintosh).

The Mask Editor opens, looking similar to the figure below. If the block is already
masked the mask definition appears on the editor. You can change the mask as needed.

 Mask Editor Overview

5-3

The Mask > Look Under Mask option shows the following:

• For a subsystem block, shows the blocks inside the masked subsystem.
• For regular masked block, shows the built-in block dialog box.
• For linked masked blocks, shows the base mask dialog box.

The Mask Editor contains a set of tabbed panes, each of which enables you to define a
feature of the mask:

• The Icon & Ports pane enables you to define the block icon. See “Icon & Ports Pane”
on page 5-5.

• The Parameters & Dialog pane enables you to design the mask dialog box. See
“Parameters & Dialog Pane” on page 5-12.

• The Initialization pane enables you to specify the initialization commands. See
“Initialization Pane” on page 5-28.

• The Documentation pane enables you to define the mask type, mask description,
and the mask help. See “Documentation Pane” on page 5-32.

5 Simulink Mask Editor

5-4

Following buttons appear on the Mask Editor:

• The Preview button applies the changes you made, and opens the mask dialog box.
• The OK button applies the mask settings and closes the Mask Editor.
• The Cancel button closes the Mask Editor without applying any changes you made

to the mask.
• The Help button displays online information about the Mask Editor.
• The Apply button applies the mask settings and leaves the Mask Editor open.
• The Unmask button deletes the mask and closes the Mask Editor. To create the

mask again, select the block and choose Mask > Create Mask.

 Icon & Ports Pane

5-5

Icon & Ports Pane

In this section...

“About the Icon & Ports Pane” on page 5-5
“Options” on page 5-6
“Icon drawing commands” on page 5-10
“Examples of drawing commands” on page 5-11

About the Icon & Ports Pane

Use the Icon & Ports pane to create block icons that contain descriptive text, state
equations, images, and graphics.

The Icon & Ports pane contains the controls described in this section.

5 Simulink Mask Editor

5-6

Options

These controls allow you to specify the following attributes of the mask icon.

Block frame

The block frame is the rectangle that encloses the block. You can choose to show or
hide the frame by setting the Block Frame parameter to Visible or Invisible. The
default is to make the block frame visible. For example, this figure shows visible and
invisible block frames for an AND gate block.

Icon transparency

The icon transparency can be set to Opaque or Transparent, based on whether you
want to hide or show what is underneath the icon. The default option Opaque hides
information such as port labels. This figure shows opaque and transparent icons for an
AND gate block. The text is displayed on the transparent icon, and hidden in the opaque
icon.

Note: If you set the icon transparency to Transparent, Simulink does not hide the block
frame even if you set the Block Frame property to Invisible.

Icon units

This option controls the coordinate system used by the drawing commands. It applies
only to the plot and text drawing commands. You can select from among these choices:
Autoscale, Normalized, and Pixel.

 Icon & Ports Pane

5-7

• Autoscale scales the icon to fit the block frame. When the block is re-sized, the icon
is also re-sized. For example, this figure shows the icon drawn using these vectors:

X = [0 2 3 4 9]; Y = [4 6 3 5 8];

The lower-left corner of the block frame is (0,3) and the upper-right corner is (9,8).
The range of the x-axis is 9 (from 0 to 9), while the range of the y-axis is 5 (from 3 to
8).

• Normalized draws the icon within a block frame whose bottom-left corner is (0,0)
and whose top-right corner is (1,1). Only X and Y values between 0 and 1 appear.
When the block is re-sized, the icon is also re-sized. For example, this figure shows the
icon drawn using these vectors:

X = [.0 .2 .3 .4 .9]; Y = [.4 .6 .3 .5 .8];

• Pixel draws the icon with X and Y values expressed in pixels. The icon is not
automatically re-sized when the block is re-sized. To force the icon to re-size with the
block, define the drawing commands in terms of the block size.

Icon rotation

When the block is rotated or flipped, you can choose whether to rotate or flip the icon or
to have it remain fixed in its original orientation. The default is not to rotate the icon.
The icon rotation is consistent with block port rotation. This figure shows the results of
choosing Fixed and Rotates icon rotation when the AND gate block is rotated.

5 Simulink Mask Editor

5-8

Port rotation

The Icon & Ports > Port rotation port option lets you specify a port rotation type for
the masked block. The choices are:

• default

Ports are reordered after a clockwise rotation to maintain a left-to-right port
numbering order for ports along the top and bottom of the block and a top-to-bottom
port numbering order for ports along the left and right sides of the block.

• physical

Ports rotate with the block without being reordered after a clockwise rotation.

The default rotation option is appropriate for control systems and other modeling
applications where block diagrams typically have a top-down and left-right orientation. It
simplifies editing of diagrams, by minimizing the need to reconnect blocks after rotations
to preserve the standard orientation.

Similarly, the physical rotation option is appropriate for electronic, mechanical,
hydraulic, and other modeling applications where blocks represent physical components
and lines represent physical connections. The physical rotation option more closely
models the behavior of the devices represented (that is, the ports rotate with the block as
they would on a physical device). In addition, the option avoids introducing line crossings
as the result of rotations, making diagrams easier to read.

For example, the following figure shows two diagrams representing the same transistor
circuit. In one, the masked blocks representing transistors use default rotation and in the
other, physical rotation.

 Icon & Ports Pane

5-9

Both diagrams avoid line crossings that make diagrams harder to read. The next figure
shows the diagrams after a single clockwise rotation.

5 Simulink Mask Editor

5-10

Note: The rotation introduces a line crossing the diagram that uses default rotation
but not in the diagram that uses physical rotation. Also that there is no way to edit
the diagram with default rotation to remove the line crossing. See “Change a Block
Orientation” for more information.

Icon drawing commands

The Icon drawing commands text box allows you to enter code that draws the block
icon. For a list of the commands, see “Block Masks”.

The drawing commands execute in the order in which they appear in this field. Drawing
commands have access to all variables in the mask workspace. If any drawing command
cannot successfully execute, the icon displays three question marks.

The drawing commands execute when the block is drawn and when:

• Changes are made and applied in the mask dialog box.
• Changes are made in the Mask Editor.

 Icon & Ports Pane

5-11

• Changes are done to the block diagram that affects the block appearance, such as
rotating the block.

Examples of drawing commands

This pane demonstrates the use of various icon drawing commands. To determine the
syntax of a command, select the command from the Command list. An example of the
selected command is displayed at the bottom of the pane and the icon produced by the
command is displayed to the right of the list.

5 Simulink Mask Editor

5-12

Parameters & Dialog Pane

In this section...

“About the Parameters & Dialog Pane” on page 5-12
“Controls” on page 5-14
“Dialog box” on page 5-20
“Property editor” on page 5-24

About the Parameters & Dialog Pane

The Parameters & Dialog pane enables you to design rich mask dialog boxes using the
dialog controls in the Parameters, Display, and Action palettes.

The Parameters & Dialog pane consists of the following:

 Parameters & Dialog Pane

5-13

• Controls

Controls are elements in a mask dialog box that users can interact with to enter or
manipulate data. You can add the following dialog controls to a mask dialog box:

• Parameter

Parameters are user inputs that take part in simulation. The Parameters palette
has a set of parameter dialog controls that you can add to a mask dialog box. See
“Parameter” on page 5-14.

• Display

Controls on the Display palette allow you to group dialog controls in the mask
dialog box and display text and images. See “Display” on page 5-19.

• Action

Action controls allow you to perform some actions in the mask dialog box. For
example, you can click a hyperlink or a button in the mask dialog box. See “Action”
on page 5-20.

• Dialog box

You can drag and drop dialog controls from the palettes to the Dialog box to create a
mask dialog box. See “Dialog box” on page 5-20.

• Property editor

The Property editor allows you to view and set the properties for the Parameters,
Display, and Action controls. See “Property editor” on page 5-24.

• Properties

Defines basic information on all dialog controls, such as Name, Value, Prompt,
and Type.

• Attributes

Defines how a mask dialog control is interpreted. Attributes are related only to
parameters.

• Dialog

Defines how dialog controls are displayed in the mask dialog box.
• Layout

5 Simulink Mask Editor

5-14

Defines how dialog controls are laid out on the mask dialog box.

Controls

Parameter

The Parameters palette contains a set of parameters where your users input data for
simulation. Each parameter has a sequence number associated with it. The Parameter
palette has the following controls:

•
 Edit parameter: Allows you to enter a parameter value by typing it into the field.

•
 Check box parameter: Accepts a Boolean value.

•
 Popup parameter: Allows you to select a parameter value from a list of possible

values.
•

 Radio button parameter: Allows you to select a parameter value from a list of
possible values. All options for a radio button are displayed on the mask dialog.

•
 Slider parameter: Allows you to slide to values within a range defined by

minimum and maximum values.

 Parameters & Dialog Pane

5-15

•
 Dial parameter: Allows you to dial to values within a range defined by minimum

and maximum values.
•

 Spinbox parameter: Allows you to spin through values within a range defined by
minimum and maximum values.

•
 DataTypeStr parameter: Enables you to specify a data type for a mask

parameter. For more details, see “DataTypeStr Parameter” on page 5-15.
•

 Min parameter: Specifies a minimum value for the parameter.
•

 Max parameter: Specifies a maximum value for the parameter. If you add a Max
parameter after a Min parameter, it appears in the same row in the mask dialog box.

•
 Promote parameter: Allows you to selectively promote block parameters

from underlying blocks to the mask. Click the Type options field to open the
Promoted Parameter Selector dialog box. In this dialog box, you can select the
block parameters that you want to promote. Click OK to close it.

•
 Promote all: Allows you to promote all underlying block parameters to the mask.

When you promote all parameters, the promote operation deletes parameters that
have been promoted previously.

You can set the parameter properties from the “Property editor” on page 5-24.

DataTypeStr Parameter

A data type parameter enables you to specify a data type for a mask parameter. A data
type parameter is particularly useful when you include a masked block in a library that
you define. For more information, see “Masks on Blocks in User Libraries”.

To control the output data type of blocks by using mask parameters, consider promoting
block parameters instead of using DataTypeStr mask parameters. For example, you
can promote the Output data type parameter of one or more Constant blocks to a
mask parameter. You can then control the data types by changing the value of the
mask parameter. For more information about promoting block parameters to a mask
parameter, see “Parameter Promotion”.

To specify the data type options, click Type options in the Property editor. It opens
the Type Options Editor dialog. In the Type options dialog box, these tabs appear:

5 Simulink Mask Editor

5-16

• Inherit rules — Specify inheritance rules for determining the data types.
• Built-in types — Specify one or more built-in Simulink data types, such as double

or int8.
• Fixed-point — Specify the scaling and signed modes for a fixed-point data type.
• User-defined — Specify a bus or enumerated (enum) data type, or both.
• Associations — Associate a data type parameter with a Min, Max, and Edit

parameter.

The figure shows a data type control definition for an Output Data Type prompt that
allows your masked block users to select any built-in type. To restrict the choices to built-
in data types, do not select any check boxes on the Fixed-point and User-defined tabs.

Specifying Inheritance Rules

To specify one or more inheritance rules for the data type control, on the Inherit rules
tab, select the appropriate check boxes.

 Parameters & Dialog Pane

5-17

By default, the Inherit rules tab includes two groups of rules:

• Common Simulink rules
• Advanced Simulink rules

The Common Simulink rules are inheritance rules that apply to many blocks in the
Simulink library. The Advanced Simulink rules are inheritance rules that apply to one or
only a few Simulink blocks.

If there are any custom inheritance rules registered on the MATLAB search path, then
the Inherit rules tab also includes a third group of rules: Custom Simulink rules.

Specifying a Fixed-Point Data Type

1 Select the parameter on the Parameter palette.
2 In the Type Options Editor, click the Fixed-point tab.
3 Select the appropriate scaling and signed mode check boxes. If you do not select a

mode, then a user cannot choose a fixed-point data type.
4 Click the Associations tab.

5 Simulink Mask Editor

5-18

Your users can use the association when specifying a fixed-point data type. For a
value or value range for a signal, the association can help with the selection of the
user select the data type with the best precision.

5 Specify the minimum, maximum, and value for the fixed-point data.

Specifying an Enumerated Data Type

1 Select the parameter on the Parameter palette.
2 In the Type Options Editor, click the User-defined tab.
3 Select the Enumerated check box.

Specifying a Bus Data Type

1 Select the parameter on the Parameter palette.
2 In the Type Options Editor, click the User-defined tab.
3 Select the Bus check box.

The outputs of some blocks, such as Constant and From Workspace blocks, can use
bus and nonbus data types. To control the output data type of these blocks by using a
DataTypeStr mask parameter, write mask initialization code in the Initialization
pane of the mask editor. The code must:

• Determine whether the value of the mask parameter is a bus type.
• If the value is a bus type, set the output data type of the target blocks by adding a

Bus: prefix to the value. If the value of the mask parameter is not a bus type, set the
output data type of the target blocks to the value.

For example, suppose you mask a Constant block. In the mask, you create a
DataTypeStr parameter named FlexibleTypeParam. Under the mask, in the
Constant block dialog box, you set the value of the Output data type parameter to
FlexibleTypeParam. To use a bus type as the value of FlexibleTypeParam, your
mask initialization code must modify the OutDataTypeStr block parameter by adding a
Bus: prefix.

MaskDTPrmString = get_param(gcb, 'FlexibleTypeParam'); % Get value of mask parameter

if strfind(MaskDTPrmString,'Bus:') % Determine if mask parameter value is a bus type

 set_param([gcb '/Constant'], 'OutDataTypeStr', ['Bus: ' 'FlexibleTypeParam']);

else

 set_param([gcb '/Constant'], 'OutDataTypeStr', 'FlexibleTypeParam');

end

 Parameters & Dialog Pane

5-19

For more information about adding code to the Initialization pane of the mask editor,
see “Initialization Pane” on page 5-28.

Note: To avoid adding the initialization code, consider promoting the Output data type
parameter of the block to a mask parameter instead of using a DataTypeStr mask
parameter. For more information, see “Parameter Promotion”.

Data Type Evaluation

Simulink enables the Evaluate option for data type controls. You cannot change this
setting.

Display

Controls on the Display palette allow you to group dialog controls in the mask dialog box
and display text and images. The Display palette has the following controls:

•
 Panel: Container for a group of dialog controls. You use a Panel for logical

grouping of dialog controls.
•

 Group box: Container used for organizing other dialog controls and containers in
the mask dialog box.

•
 Tab: Tab is used for grouping dialog controls in the mask dialog box. A tab is

contained within a tab container. A tab container can have multiple tabs.
•

 Text: Text displayed in the mask dialog box.
• Image: Image displayed in the mask dialog box.

5 Simulink Mask Editor

5-20

You can set or view the properties for containers from the “Property editor” on page
5-24.

When you create a new mask, the description group box contains the following two rows
that are added to the Dialog box.

Prompt Name Description

%<MaskType> DescGroupVar Mask type specifies a title for the group
box. The text that you enter in the Mask
type field is mapped to %<MaskType>.

%<MaskDescription> DescTextVar Mask description specifies information
related to the mask. The text you
enter in the Mask description field is
mapped to %<MaskDescription>.

Action

These controls allow you to perform some actions in the mask dialog box. For example,
click on a hyperlink or button on the mask dialog box. The Action palette has the
following controls:

•
 Hyperlink: Hyperlink text displayed on the mask dialog box.

•
 Button: Button controls on the mask dialog box. You can program button for

specific actions.

You can set the properties for Action controls from the “Property editor” on page
5-24.

Dialog box

You can build a hierarchy of dialog controls by dragging them from a palette to the
Dialog box. You can also double-click dialog controls on the palettes to add them to the
Dialog box. You can have maximum of 32 levels of hierarchy in the Dialog box.

 Parameters & Dialog Pane

5-21

The Dialog box displays three fields: Type, Prompt, and Name.

• The Type field shows the type of the dialog control and cannot be edited. It also
displays a sequence number for parameter dialog controls.

• The Prompt field shows the prompt text for the dialog control. For label and
hyperlink, a default prompt string is provided.

• The Name field is auto-populated and uniquely identifies the dialog controls.

The Parameter controls are displayed in light blue background whereas the Display
and Action controls are displayed in white background on the Dialog box.

Moving dialog controls in the Dialog box

You can move dialog controls up and down in the hierarchy using drag and drop. When
you drag a control, a cue line indicates the level in the hierarchy. Based on the type of
dialog control, you can drag and drop controls as indicated:

• Drag and drop on the container dialog control in the Dialog box

• Drop before it: Adds the dialog control as a sibling before the current dialog
control.

• Drop on it: Adds to the container as a child at the end.

• Drop after it: Adds the dialog control as a sibling after the current dialog control.

• Drag and drop on the non-container dialog control in the Dialog box

• Drop before it: Adds the dialog control before the current dialog control.

5 Simulink Mask Editor

5-22

• Drop after it: Adds the dialog control after the current dialog control.

• Drag and drop into Dialog box blank area

• The element is added to the root level node.

Cut, Copy, and Paste Controls

You can cut, copy, and paste dialog controls on the Dialog box using the context menu.

Delete nodes

Right-click the control that you want to delete in the Dialog box. Select,
from the context menu. For example, to delete a Check box dialog control, right-click
and select Delete:

You can also use the Delete menu option to delete a dialog control.

Error Display

If you have errors in parameters names, such as, duplicate, invalid parameter names,
or empty names, the mask editor displays the parameter names in red outline. When
you edit the parameters to fix errors, the modified fields are identified by a yellow
background.

 Parameters & Dialog Pane

5-23

1 Duplicate Parameter, Display, and Action control names are not allowed.

5 Simulink Mask Editor

5-24

2 Parameter names must be unique and are case insensitive. Names varying
only in lowercase and uppercase letters, are treated as duplicates. For example,
Parameter1 and parameter1 are not allowed.

3 Parameter , Display, and Action control names can be same as long as different
lowercase and uppercase characters are used. For example, while a and A are
allowed, b and b are not allowed.

4 Action and Display control names are case sensitive. For example, while Control3
and control3 are allowed, control3 and control3 are not allowed.

Property editor

The Property editor allows you to view and set the properties for Parameter,
Display, and Action dialog controls. The Property editor for Parameter is shown
below:

 Parameters & Dialog Pane

5-25

Properties

You can set the following properties for Parameter, Action, and Display dialog
controls:

• Name

Uniquely identifies the dialog control in the mask dialog box. The Name property
must be set for all dialog controls.

• Value

Value of the Parameter dialog control. The Value property applies only to the
Parameter dialog controls.

• Prompt

Label text that identifies the parameters in a mask dialog box. The Prompt property
applies to all dialog controls except Panel and Image dialog control.

• Type

Type of the dialog control. You can change the Type field only for the Parameter
dialog controls.

• Type options

The Type options property allows you to set specific Parameter properties. The
Type options property applies to the Popup, Radio button, DataTypeStr, and
Promoted parameters.

• File path

You can add an image to a mask using the Image dialog control. You can also display
an image on a Button dialog control. In either case, provide the path to the image in
the File path property that is enabled for these two dialog controls. For the Button
dialog control, specify an empty string for the Prompt property in order for the image
to be displayed.

• Word wrap

The Word wrap property enables word wrapping for long text. The Word wrap
property applies only for Text dialog control.

Attributes

You can set the following attributes for Parameter and Action dialog controls:

5 Simulink Mask Editor

5-26

• Evaluate

Simulink uses the value of a mask parameter as the user enters it in the mask dialog
box, or it can evaluate what your user specify and use as the result of the evaluation.
Select the Evaluate option for a parameter to specify parameter evaluation (the
default). Clear the option to suppress evaluation.

• Tunable

By default, your masked block users can change a mask parameter value during
simulation. Clear the Tunable option to prohibit changing the parameter value
during simulation. If the masked block does not support parameter tuning, Simulink
ignores the Tunable option setting of a mask parameter. For information about
parameter tuning and the blocks that support it, see “Tunable Block Parameters”.

• Read only

Indicates that the parameter cannot be modified.
• Hidden

Indicates that the parameter must not be displayed in the mask dialog box.
• Never save

Indicates that the parameter value never gets saved in the model file.

Dialog box

You can set the following Dialog properties for the Parameter and Display dialog
controls:

• Enable

Clearing this option makes the selected parameter prompt unavailable and disables
its edit control. Your masked block users cannot set the value of the parameter.

• Visible

The selected parameter appears in the mask dialog box only if this option is selected.
• Callback

MATLAB code that you want Simulink to execute when a user applies a change to the
selected parameter.

 Parameters & Dialog Pane

5-27

Layout

You can set the location and alignment of the dialog controls in the mask dialog box as
follows:

• Item location

Allows you to set the location for the dialog control to appear in the current row or a
new row.

• Prompt location

Allows you to set the prompt location for the dialog control on either the top or to the
left of the dialog control.

• Orientation

Allows you to specify horizontal or vertical orientation for sliders and radio buttons.

You cannot set the Prompt location property for Check box, Dial, DataTypeStr, and
Radiobutton.

5 Simulink Mask Editor

5-28

Initialization Pane

In this section...

“About the Initialization Pane” on page 5-28
“Dialog variables” on page 5-30
“Initialization commands” on page 5-30
“Allow library block to modify its contents” on page 5-30
“Rules for Initialization commands” on page 5-31

About the Initialization Pane

The Initialization pane allows you to enter MATLAB commands that initialize the
masked block.

 Initialization Pane

5-29

When you open a model, Simulink locates the visible masked blocks that reside at the
top level of the model or in an open subsystem. Simulink only executes the initialization
commands for these visible masked blocks if they meet either of the following conditions:

• The masked block has icon drawing commands.

Note: Simulink does not initialize masked blocks that do not have icon drawing
commands, even if they have initialization commands.

• The masked block belongs to a library and has the Allow library block to modify
its contents enabled.

Initialization commands for all masked blocks in a model run when you:

• Update the diagram

5 Simulink Mask Editor

5-30

• Start simulation
• Start code generation

Initialization commands for an individual masked block run when you:

• Change any of the mask parameters that define the mask, such as MaskDisplay and
MaskInitialization, by using the Mask Editor or the set_param command.

• Rotate or flip the masked block, if the icon depends on the initialization commands.
• Cause the icon to be drawn or redrawn, and the icon drawing depends on

initialization code.
• Change the value of a mask parameter by using the block dialog box or the

set_param command.
• Copy the masked block within the same model or between different models.

The Initialization pane contains the controls described in this section.

Dialog variables

The Dialog variables list displays the names of the dialog controls and associated mask
parameters, which are defined in the Parameters & Dialog pane. You can also use the
list to change the names of mask parameters. To change a name, double-click the name
in the list. An edit field containing the existing name appears. Edit the existing name
and click Enter or click outside the edit field to confirm your changes.

Initialization commands

Enter the initialization commands in this field. You can enter any valid MATLAB
expression, consisting of MATLAB functions and scripts, operators, and variables defined
in the mask workspace. Initialization commands run in the mask workspace, not the
base workspace.

Allow library block to modify its contents

This check box is enabled only if the masked subsystem resides in a library. Checking
this option allows the block's initialization code to modify the contents of the masked
subsystem by adding or deleting blocks and setting the parameters of those blocks.
Otherwise, an error is generated when a masked library block tries to modify its contents
in any way.

 Initialization Pane

5-31

Rules for Initialization commands

Following rules apply for mask initialization commands:

• Do not use initialization code to create mask dialogs whose appearance or control
settings change depending on changes made to other control settings. Instead, use the
mask callbacks provided specifically for this purpose.

• Avoid prefacing variable names in initialization commands with MaskParam_L_ and
MaskParam_M_. These specific prefixes are reserved for use with internal variable
names.

• Avoid using set_param commands to set parameters of blocks residing in masked
subsystems that reside in the masked subsystem being initialized. See “Setting
Nested Masked Block Parameters” for details.

5 Simulink Mask Editor

5-32

Documentation Pane

In this section...

“About the Documentation Pane” on page 5-32
“Mask type” on page 5-33
“Mask description” on page 5-33
“Mask help” on page 5-33

About the Documentation Pane

The Documentation pane enables you to define or modify the type, description, and
help text for a masked block.

 Documentation Pane

5-33

Mask type

The mask type is a block classification that appears in the mask dialog box and on all
Mask Editor panes for the block. When Simulink displays a mask dialog box, it suffixes
(mask) to the mask type. To define the mask type, enter it in the Mask type field. The
text can contain any valid MATLAB character, but cannot contain line breaks.

Mask description

The mask description is summary help text that describe the block's purpose or function.
The description appears in the mask dialog box under the mask type. To define the
mask description, enter it in the Mask description field. The text can contain any legal
MATLAB character. Simulink automatically wraps long lines. You can force line breaks
by using the Return key.

Mask help

The Online Help for a masked block provides information in addition to that provided by
the Mask type and Mask description fields. This information appears in a separate
window when the masked block user clicks the Help button on the mask dialog box. To
define the mask help, enter one of the following in the Mask help field.

• URL specification
• web or eval command
• Literal or HTML text

Provide an URL

If the first line of the Mask help field is an URL, Simulink passes the URL to your
default web browser. The URL can begin with http:, www:, file:, ftp:, or mailto:.
Examples:

http://www.mathworks.com

file:///c:/mydir/helpdoc.html

Once the browser is active, MATLAB and Simulink have no further control over its
actions.

5 Simulink Mask Editor

5-34

Provide a web Command

If the first line of the Mask help field is a web command, Simulink passes the command
to MATLAB, which displays the specified file in the MATLAB Online Help browser.
Example:

web([docroot '/MyBlockDoc/' get_param(gcb,'MaskType') '.html'])

See the MATLAB web command documentation for details. A web command used for
mask help cannot return values.

Provide an eval Command

If the first line of the Mask help field is an eval command, Simulink passes the
command to MATLAB, which performs the specified evaluation. Example:

eval('!Word My_Spec.doc')

See MATLAB eval command documentation for details. An eval command used for
mask help cannot return values.

Provide Literal or HTML Text

If the first line of the Mask help field is not an URL, or a web or eval command,
Simulink displays the text in the MATLAB Online Help browser under a heading that is
the value of the Mask type field. The text can contain any legal MATLAB character, line
breaks, and any standard HTML tag, including tags like img that display images.

Simulink first copies the text to a temporary folder, then displays the text using the web
command. If you want the text to display an image, you can provide a URL path to the
image file, or you can place the image file in the temporary folder. Use tempdir to find
the temporary folder that Simulink uses for your system.

6

Concurrent Execution Window

• “Concurrent Execution Window: Main Pane” on page 6-2
• “Data Transfer Pane” on page 6-6
• “CPU Pane” on page 6-11
• “Hardware Node Pane” on page 6-13
• “Periodic Pane” on page 6-16
• “Task Pane” on page 6-20
• “Interrupt Pane” on page 6-24
• “System Tasks Pane” on page 6-30
• “System Task Pane” on page 6-31
• “System Interrupt Pane” on page 6-35
• “Profile Report Pane” on page 6-38

6 Concurrent Execution Window

6-2

Concurrent Execution Window: Main Pane

In this section...

“Concurrent Execution Window Overview” on page 6-2
“Enable explicit model partitioning for concurrent behavior” on page 6-5

Concurrent Execution Window Overview

The Concurrent Execution window comprises the following panes:

• Concurrent Execution (root level)

Display general information for the model, including model name, configuration set
name, and status of configuration set.

• Data Transfer

 Concurrent Execution Window: Main Pane

6-3

Configure data transfer methods between tasks.
• Tasks and Mapping

Map blocks to tasks.
• “CPU Pane” on page 6-11

Set up software nodes.
• Periodic

Name periodic tasks.
• Task

Define and configure a periodic task that the target operating system executes.
• Interrupt

Define aperiodic event handler that executes in response to hardware or software
interrupts.

• System Task Pane

Display system tasks.
• System Task

Display periodic system tasks.
• System Interrupt

Display interrupt system tasks.
• “Profile Report Pane” on page 6-38

Generate and examine profile report for model.

Click items in the tree to select panes.

Configuration

This pane appears only if you select Allow tasks to execute concurrently on target
in the Model Explorer dialog box.

1 In the Model Hierarchy pane, right-click the active configuration and select Show
Concurrent Execution options.

6 Concurrent Execution Window

6-4

The Dialog pane displays the Solver parameters, which now contains a Concurrent
execution options section.

2 Select Allow tasks to execute concurrently on target.
3 Click Configure Tasks.

The concurrent execution dialog box is displayed.

See Also

“Customize Concurrent Execution Settings”

 Concurrent Execution Window: Main Pane

6-5

Enable explicit model partitioning for concurrent behavior

Specify whether you want to manually map tasks (explicit mapping) or use the rate-
based tasks.

Settings

Default: On

 On
Enable manual mapping of tasks to blocks.

 Off
Allow implicit rate-based tasks.

Command-Line Information

Parameter: ExplicitPartitioning
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Customize Concurrent Execution Settings”

Dependencies

Selecting this check box:

• Allows custom task-to-block mappings. The node name changes to Tasks and
Mapping label and the icon changes.

• Disables the Automatically handle rate transition for data transfer check box
on the Data Transfer pane.

Clearing this check box

• Causes the software to ignore the task-to-block mappings. The node name changes to
(Ignored) Tasks and Mapping.

• Enables the Automatically handle rate transition for data transfer check box on
the Data Transfer pane.

6 Concurrent Execution Window

6-6

Data Transfer Pane

In this section...

“Data Transfer Pane Overview” on page 6-6
“Periodic signals” on page 6-7
“Continuous signals” on page 6-8
“Extrapolation method” on page 6-9
“Automatically handle rate transition for data transfer” on page 6-9

Data Transfer Pane Overview

Edit options to define data transfer between tasks.

See Also

“Customize Concurrent Execution Settings”

 Data Transfer Pane

6-7

Periodic signals

Select the data transfer mode of synchronous signals.

Settings

Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay)

Ensure maximum capacity during data transfer.
Ensure data integrity only

Ensure maximum data integrity during data transfer.

Dependency

This parameter is enabled if the Enable explicit task mapping to override implicit
rate-based tasks check box on the Concurrent Execution pane is selected.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-8

Continuous signals

Select the data transfer mode of continuous signals.

Settings

Default: Ensure deterministic transfer (maximum delay)

Ensure deterministic transfer (maximum delay)

Ensure maximum capacity during data transfer.
Ensure data integrity only

Ensure maximum data integrity during data transfer.

Dependency

This parameter is enabled if the Enable explicit task mapping to override implicit
rate-based tasks check box on the Concurrent Execution pane is cleared.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 Data Transfer Pane

6-9

Extrapolation method

Select the extrapolation method of data transfer to configure continuous-to-continuous
task transitions.

Settings

Default: None

None

Do not use any extrapolation method for task transitions.
Zero Order Hold

User zero order hold extrapolation method for task transitions.
Linear

User linear extrapolation method for task transitions.
Quadratic

User quadratic extrapolation method for task transitions.

Dependency

This parameter is enabled if the Enable explicit task mapping to override implicit
rate-based tasks check box on the Concurrent Execution pane is selected.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Automatically handle rate transition for data transfer

Select the extrapolation method of data transfer to configure continuous-to-continuous
task transitions.

Settings

Default: Off

6 Concurrent Execution Window

6-10

 On
Enable the software to handle rate transitions for data transfers automatically,
without user intervention.

 Off
Disable the software from handling rate transitions for data transfers automatically.

Dependencies

This parameter is enabled if the Concurrent Execution pane Enable explicit task
mapping to override implicit rate-based tasks check box is cleared.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 CPU Pane

6-11

CPU Pane

CPU Pane Overview

Configure software nodes.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-12

Name

Specify a unique name for software node.

Settings

Default: CPU

• Alternatively, enter a unique string to identify the software node. This value must be
a valid MATLAB variable.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 Hardware Node Pane

6-13

Hardware Node Pane

Hardware Node Pane Overview

Configure hardware nodes.

6 Concurrent Execution Window

6-14

Name

Specify name of hardware node.

Settings

Default: FPGAN

• Alternatively, enter a unique string to identify the hardware node. This value must be
a valid MATLAB variable.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Clock Frequency [MHz]

Specify clock frequency of hardware node.

Settings

Default: 33

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Color

Specify the color for the hardware node icon.

Settings

Default: Next color in basic color sequence

 Hardware Node Pane

6-15

Tips

The hardware node icon appears in the tree.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-16

Periodic Pane

In this section...

“Periodic Pane Overview” on page 6-16
“Name” on page 6-17
“Periodic Trigger” on page 6-18
“Color” on page 6-19
“Template” on page 6-19

Periodic Pane Overview

Configure periodic (synchronous) tasks.

See Also

“Customize Concurrent Execution Settings”

 Periodic Pane

6-17

Name

Specify a unique name for the periodic task trigger configuration.

Settings

Default: Periodic

• Alternatively, enter a unique string to identify the periodic task trigger configuration.
This value must be a valid MATLAB variable.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-18

Periodic Trigger

Specify the period of a periodic trigger

Settings

Default:

• Change ERTDefaultEvent to the actual trigger source event.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 Periodic Pane

6-19

Color

Specify a color for the periodic trigger icon.

Settings

Default: Blue

• Click the color picker icon to select a color for the periodic trigger icon.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

Template

Specify the XML-format custom architecture template file that code generation
properties use for the task, periodic trigger or aperiodic triggers.

Settings

Default: None

The XML-format custom architecture template file defines these settings.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

• “Define a Custom Architecture File”
• “Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-20

Task Pane

In this section...

“Task Pane Overview” on page 6-20
“Name” on page 6-21
“Period” on page 6-22
“Color” on page 6-23

Task Pane Overview

Specify concurrent execution tasks. You can add tasks for periodic and interrupt-driven
(aperiodic) tasks.

See Also

“Customize Concurrent Execution Settings”

 Task Pane

6-21

Name

Specify a unique name for the task configuration.

Settings

Default: Task

• Alternatively, enter a unique string to identify the periodic task trigger configuration.
This value must a valid MATLAB variable.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-22

Period

Specify the period for the task.

Settings

Default: 1

Minimum: 0

• Enter a positive real or ratio value.

Tip

You can parameterize this value by using MATLAB expression strings as values.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 Task Pane

6-23

Color

Specify a color for the task icon.

Settings

Default: Blue

• Click the color picker icon to select a color for the task icon.

Tips

The task icon appears on the top left of the Model block. It indicates the task to which the
Model block is assigned.

• As you add a task, the software automatically assigns a color to the task icon, up
to six colors. When the current list of colors is exhausted, the software reassigns
previously used colors to the new tasks, starting with the first color assigned.

• If you select a different color for an icon and then use the software to automatically
assign colors, the software assigns a preselected color.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-24

Interrupt Pane

In this section...

“Interrupt Pane Overview” on page 6-24
“Name” on page 6-25
“Color” on page 6-26
“Aperiodic trigger source” on page 6-27
“Signal number [2,SIGRTMAX-SIGRTMIN-1]” on page 6-28
“Event name” on page 6-29

Interrupt Pane Overview

Configure interrupt-driven (aperiodic) tasks.

See Also

“Customize Concurrent Execution Settings”

 Interrupt Pane

6-25

Name

Specify a unique name for the interrupt-driven task configuration.

Settings

Default: Interrupt

• Enter a unique string to identify the interrupt-driven task configuration. This value
must a valid MATLAB variable.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-26

Color

Specify a color for the interrupt icon.

Settings

Default: Blue

• Click the color picker icon to select a color for the interrupt icon.

Tips

The interrupt icon appears on the top left of the Model block. It indicates the task to
which the Model block is assigned.

• As you add an interrupt, the software automatically assigns a color to the interrupt
icon, up to six colors. When the current list of colors is exhausted, the software
reassigns previously used colors to the new interrupts, starting with the first color
assigned.

• If you select a different color for an icon and then use the software to automatically
assign colors, the software assigns a preselected color.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 Interrupt Pane

6-27

Aperiodic trigger source

Specify the trigger source for the interrupt-driven task.

Settings

Default: Posix Signal (Linux/VxWorks 6.x)

Posix Signal (Linux/VxWorks 6.x)

For Linux or VxWorks® systems, select Posix Signal (Linux/VxWorks 6.x).
Event (Windows)

For Windows systems, select Event (Windows).

Dependencies

This parameter enables either Signal number [2,SIGRTMAX-SIGRTMIN-1] or Event
name.

• Selecting Posix Signal (Linux/VxWorks 6.x) enables the following parameter:

Signal number [2,SIGRTMAX-SIGRTMIN-1]
• Selecting Event (Windows) enables the following parameter:

Event name

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-28

Signal number [2,SIGRTMAX-SIGRTMIN-1]

Enter the POSIX® signal number as the trigger source.

Settings

Default: 2

Minimum: 2

Maximum: SIGRTMAX-SIGRTMIN-1

• Enter the POSIX signal number as the trigger source.

Dependencies

Aperiodic trigger source > Posix signal (Linux/VxWorks 6.x) enables this
parameter.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 Interrupt Pane

6-29

Event name

Enter the name of the event as the trigger source.

Settings

Default: ERTDefaultEvent

• Change ERTDefaultEvent to the actual trigger source event.

Dependencies

Aperiodic trigger source > Event (Windows) enables this parameter.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-30

System Tasks Pane

System Tasks Pane Overview

Display system tasks.

See Also

“Customize Concurrent Execution Settings”

 System Task Pane

6-31

System Task Pane

In this section...

“System Task Pane Overview” on page 6-31
“Name” on page 6-32
“Period” on page 6-33
“Color” on page 6-34

System Task Pane Overview

Display periodic system tasks.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-32

Name

Specify a default name for the periodic system task configuration.

Settings

Default: DiscreteN

Tip

To change the name, period, or color of this task, right-click the task node and select
Convert to editable periodic task.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 System Task Pane

6-33

Period

Specify the period for the task.

Settings

Default: 1

Minimum: 0

• Enter a positive real or ratio value.

Tip

• To change the name, period, or color of this task, right-click the task node and select
Convert to editable periodic task.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-34

Color

Specify the outline color for the task icon.

Settings

Default: Blue

Tips

The task icon appears on the top left of the Model block. It indicates the task the Model
block is assigned to.

• To change the name, period, or color of this task, right-click the task node and select
Convert to editable periodic task.

See Also

“Customize Concurrent Execution Settings”

 System Interrupt Pane

6-35

System Interrupt Pane

In this section...

“System Interrupt Pane Overview” on page 6-35
“Name” on page 6-36
“Color” on page 6-37

System Interrupt Pane Overview

Display interrupt system tasks.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-36

Name

Specify a default name for the interrupt system task.

Settings

Default: Asynchronous

Tip

To change the name or color of this task, right-click the task node and select Convert to
editable aperiodic trigger.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

 System Interrupt Pane

6-37

Color

Specify the outline color for the task icon.

Tips

The task icon appears on the top left of the Model block. It indicates the task the Model
block is assigned to.

• To change the name or color of this task, right-click the task node and select Convert
to editable aperiodic task.

See Also

“Customize Concurrent Execution Settings”

6 Concurrent Execution Window

6-38

Profile Report Pane

In this section...

“Profile Report Pane Overview” on page 6-38
“Number of time steps” on page 6-39

Profile Report Pane Overview

Generate and examine profile report for model.

See Also

“Customize Concurrent Execution Settings”

 Profile Report Pane

6-39

Number of time steps

Specify number of time steps to generate profile report.

Settings

Default: 100

• Enter the number of time steps to collect data.

Command-Line Information

See “Command-Line Interface for Concurrent Execution”.

See Also

“Customize Concurrent Execution Settings”

7

Simulink Simulation Stepper

7 Simulink Simulation Stepper

7-2

Simulation Stepping Options

In this section...

“Simulation Stepping Options Overview” on page 7-2
“Enable stepping back” on page 7-4
“Maximum number of saved back steps” on page 7-5
“Interval between stored back steps” on page 7-6
“Move back/forward by” on page 7-7
“Pause simulation when time reaches” on page 7-8

Simulation Stepping Options Overview

Use the Simulation Stepping Options dialog box to configure the time and the manner of
manually stepping through a simulation.

 Simulation Stepping Options

7-3

Configuration

This pane appears when you select Simulation > Stepping Options.

1 Set the time at which you wish to pause the simulation
2 To step backwards through a simulation, select Enable stepping back and specify

the total number and frequency of snapshots.
3 Specify the increment of steps by which the simulation steps either forward or

backwards.
4 To pause simulation at a particular time, select Pause simulation when time

reaches check box and enter the pause time.

Tips

• To start the Simulation Stepping Options dialog box from the Simulink toolbar, click
.

• You can change the value while the simulation is running or paused.

See Also

• “How Simulation Stepper Helps With Model Analysis”

7 Simulink Simulation Stepper

7-4

Enable stepping back

Enable stepping back.

Settings

Default: Off

 On
Enable stepping back.

 Off
Disable stepping back.

Tip

Simulation stepping (forward and back) is available only for Normal and Accelerator
modes.

Dependencies

This parameter enables the Maximum number of saved back steps and Interval
between stored back steps parameters.

See Also

“How Simulation Stepper Helps With Model Analysis”

 Simulation Stepping Options

7-5

Maximum number of saved back steps

Enter the maximum number of snapshots that the software can capture. A snapshot at a
particular simulation time captures all the information required to continue a simulation
from that point.

Settings

Default: 10

Minimum: 0

Dependencies

Enable stepping back enables this parameter and the Interval between stored
back steps parameter.

See Also

• “How Simulation Stepper Helps With Model Analysis”
• “Simulation Snapshots”

7 Simulink Simulation Stepper

7-6

Interval between stored back steps

Enter the number of major time steps to take between capturing simulation snapshots.

Settings

Default: 10

Minimum: 1

• “How Simulation Stepper Helps With Model Analysis”
• “Simulation Snapshots”

Tip

The number of steps to skip between snapshots. This parameter enables you to save
snapshots of simulation state for stepping backward at periodic intervals, such as
every three steps forward. This interval is independent of the number of steps taken in
either the forward or backward direction. Because taking simulation snapshots affects
simulation speed, saving snapshots less often can improve simulation speed.

Dependencies

Enable stepping back enables this parameter and the Maximum number of saved
back steps parameter.

See Also

• “How Simulation Stepper Helps With Model Analysis”
• “Simulation Snapshots”

 Simulation Stepping Options

7-7

Move back/forward by

Enter the number of major time steps for a single call to step forward or back.

Settings

Default: 1

Minimum: 1

Tip

The maximum number of steps, or snapshots, to capture while simulating forward.
The greater the number, the more memory the simulation occupies and the longer the
simulation takes to run.

See Also

• “How Simulation Stepper Helps With Model Analysis”
• “Simulation Snapshots”

7 Simulink Simulation Stepper

7-8

Pause simulation when time reaches

Pause simulation when time reaches the specified time(s).

Settings

Default: Off

 On
Enable stepping back.

 Off
Disable stepping back.

Selecting this check box enables the associated text box. In this text box, enter the time
at which simulation is to be paused.

Default: 5

Minimum: 0

• This value can be a scalar value, or a vector of times. Specifying a vector of pause
times is equivalent to specifying multiple separate pause times for a single
simulation.

You can specify pause times as variables in the model or MATLAB workspace.
• The stepper does not alter the course of the simulation. As a consequence, specifying a

value for a pause time does not necessarily pause the simulation at exactly that time.
Instead, the simulation pauses at whatever simulation time is closest to the requested
pause time, without going below it.

See Also

“How Simulation Stepper Helps With Model Analysis”

8

Simulink Variant Manager

• “Variant Manager Overview” on page 8-2
• “Variant Configuration Data Pane” on page 8-3
• “Model Hierarchy Pane” on page 8-6
• “Validation Results Pane” on page 8-9

8 Simulink Variant Manager

8-2

Variant Manager Overview

Using the Variant Manager you can define and manage variant configurations in the
following ways.

• Explore, visualize, and manipulate variant hierarchy.
• Define, validate, and visualize variant configurations.
• Define and validate constraints for the model.
• Specify the default active configuration.
• Set control variables to either strings or Simulink.Parameter objects.
• Associate Simulink.VariantConfigurationData object with model.
• Validate a variant configuration or model without updating the model.

The Variant Manager contains the following panes.

• The Variant Configuration Data pane enables you to define variant configurations
and constraints, and export them as variant configuration data objects. See “Variant
Configuration Data Pane” on page 8-3.

• The Model Hierarchy pane enables you to visualize the variant hierarchy. See
“Model Hierarchy Pane” on page 8-6.

• The Validation Results pane displays information on the source of control variables
and validation errors. See “Validation Results Pane” on page 8-9.

Related Examples
• “Add and Validate Variant Configurations”
• “Import Control Variables to Variant Configuration”
• “Define Constraints and Export Variant Configurations”

More About
• “Variant Management”

 Variant Configuration Data Pane

8-3

Variant Configuration Data Pane

In this section...

“Name” on page 8-3
“Configurations” on page 8-3
“Constraints” on page 8-5

Use the Variant Configuration Data pane to create configurations, define control
variables, associate referenced model configurations, and define constraints. The
configurations and associated data are stored in a variant configuration data object.

Name

Enter the Name of the variant configuration data object that you want to export into and

click the Export button .

Configurations

Add, delete, or copy variant configurations. In addition, set a default configuration.

Button Description

Add variant configuration

Delete variant configuration

Duplicate variant configuration

Set/Clear default active configuration

Description tab

Provide a description for the selected variant configuration.

8 Simulink Variant Manager

8-4

Control Variables tab

Add, delete, or copy control variables. Toggle data type and import control variables from
the workspace.

Button Description

Add control variable

Delete control variable

Duplicate control variable

Toggle type of a control variable

A control variable can be either a string or a
Simulink.Parameter object.
Edit Simulink.Parameter control variables

Import control variables from base workspace

Submodel Configurations tab

Define variant configuration for a referenced model. Add or delete a referenced
model configuration.

 Variant Configuration Data Pane

8-5

Constraints

Specify model-level constraints. Add or delete a constraint.

Name

Name of the constraint.

Condition

Condition expression for the constraint that must be satisfied by all variant
configurations.

Description

Description of the constraint.

8 Simulink Variant Manager

8-6

Model Hierarchy Pane

In this section...

“Validate Configuration” on page 8-6
“Show” on page 8-7
“Hierarchy Table” on page 8-7

You can visualize and explore the variant hierarchy of a model and edit the properties of
variant blocks, their choices, and variant objects from the Model Hierarchy pane. This
pane displays the Name, Submodel Configuration, Variant Control, and associated
Conditions of variant objects used as variant controls.

You can browse the hierarchy using the navigation icons. The controls on the Model
Hierarchy pane allow you to perform the following actions.

• Refresh and validate hierarchy.
• Display only variant blocks.
• Navigate between active, invalid, and overridden variant choices.

Validate Configuration

Select a configuration from the Validate dropdown to refresh the hierarchy.

 Model Hierarchy Pane

8-7

Show

Selectively display blocks in the variant hierarchy.

• Model and variant blocks: Only model reference and variant blocks are displayed.
• All hierarchical blocks: All hierarchical blocks in the model are displayed.

Hierarchy Table

The model hierarchy is displayed as a tree with each block representing a node in the
hierarchy. The hierarchy displays active, inactive, overridden, and invalid variants. You
can edit referenced model configurations, variant controls, and variant conditions.

You can expand nodes to view the underlying blocks. Protected reference models cannot
be viewed in the hierarchy.

8 Simulink Variant Manager

8-8

The following columns are displayed in the hierarchy table.

Name

Name of the model or block.

Submodel Configuration

Configurations used by referenced models. You can only edit the Submodel
Configuration for rows that display models referenced by the top model.

Variant Control

Variant control parameter of a variant choice. This column is identical to the variant
control column of the parameter dialog box of variant blocks. You can edit this column for
variant choices across the hierarchy.

Condition

Displays and allows you to edit the condition for the Simulink.Variant object when it
is used as variant control. You can edit this column for variant choices across the variant
hierarchy.

 Validation Results Pane

8-9

Validation Results Pane

In this section...

“Source” on page 8-9
“Message” on page 8-9

This pane displays information on the source of control variables for the models in
the hierarchy. For example, if a variant configuration is used for a referenced model,
the referenced model name is displayed in the row along with name of the variant
configuration data object and variant configuration. The pane also displays errors
encountered during validation of the variant configuration.

To revalidate the configuration and refresh the hierarchy, click the Refresh button
button.

Source

Model name or block path.

Message

Data source information and errors.

