Simulink®

Graphical User Interface

0y

MATLAB&SIMULINK

R2015b <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Graphical User Interface

© COPYRIGHT 1990-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Simulink 7.0 (Release 2007b)

Revised for Simulink 7.1 (Release 2008a)
Revised for Simulink 7.2 (Release 2008b)
Revised for Simulink 7.3 (Release 2009a)
Revised for Simulink 7.4 (Release 2009b)
Revised for Simulink 7.5 (Release 2010a)
Revised for Simulink 7.6 (Release 2010b)
Revised for Simulink 7.7 (Release 2011a)
Revised for Simulink 7.8 (Release 2011b)
Revised for Simulink 7.9 (Release 2012a)
Revised for Simulink 8.0 (Release 2012b)
Revised for Simulink 8.1 (Release 2013a)
Revised for Simulink 8.2 (Release 2013b)
Revised for Simulink 8.3 (Release 2014a)
Revised for Simulink 8.4 (Release 2014b)
Revised for Simulink 8.5 (Release 2015a)
Revised for Simulink 8.6 (Release 2015b)

Contents

Configuration Parameters Dialog Box

1

Configuration Parameters Dialog Box Overview 1-2
Category View it 1-2
List View e 1-3
Model Configuration Pane 1-5
Model Configuration Overview 1-5
Name e 1-6
Description e 1-7
Configuration Parameters (List View Only) 1-7
Solver Pane 1-8
Solver OVerview et 1-10
Start time 1-12
Stop time 1-13
Type . oo 1-15
SOlVer . .. 1-17
Max step S1Ze v it 1-24
Initial step size 1-26
Min Step SIZE€ . . oo v it e 1-28
Relative tolerance 1-30
Absolute tolerance 1-32
Shape preservation, 1-34
Maximum orderuiii et 1-36
Solver reset method 1-38
Number of consecutive min steps 1-40
Solver Jacobian Method 1-42
Tasking mode for periodic sample times 1-44
Automatically handle rate transition for data transfer 1-46
Deterministic data transfer 1-48
Higher priority value indicates higher task priority 1-50
Zero-crossing control 1-51
Time tolerance, 1-53

vi

Contents

Number of consecutive zero crossings
Algorithm
Signal threshold
Periodic sample time constraint
Fixed-step size (fundamental sample time)
Sample time properties
Extrapolation order
Number Newton's iterations
Allow tasks to execute concurrently on target

Data Import/Export Pane

Data Import/Export Overview
Input
Initial state

Output

Format
Limit data points tolast
Decimation
Save complete SimState in final state
Signal logging
Signal logging format
Data stores
Output options vt
Refine factor
Output times i
Save simulation output as single object
Logging intervals
Record logged workspace data in Simulation Data Inspector
Enable live streaming of selected signals to Simulation Data
Inspector
Write streamed signals to workspace

Optimization Pane: General

Optimization Pane: General Tab Overview
Block reduction e
Conditional input branch execution
Implement logic signals as Boolean data (vs. double)
Application lifespan (days)
Use division for fixed-point net slope computation
Use floating-point multiplication to handle net slope
COTTECEIONS . v vttt e e e e e et e et e

1-55
1-57
1-59
1-61
1-64
1-66
1-69
1-71
1-72

1-74
1-76
1-77
1-79
1-81
1-83
1-85
1-87
1-89
1-92
1-94
1-96
1-98
1-101
1-104
1-106
1-108
1-110
1-111
1-113
1-116

1-118
1-119

1-120
1-122
1-123
1-126
1-129
1-131
1-134

1-136

Default for underspecified data type 1-138
Optimize using the specified minimum and maximum values 1-140

Remove root level I/O zero initialization 1-143
Use memset to initialize floats and doubles to 0.0 1-145
Remove internal data zero initialization 1-147
Optimize initialization code for model reference 1-149
Remove code from floating-point to integer conversions that
wraps out-of-range values 1-151
Remove code from floating-point to integer conversions with
saturation that maps NaN tozero 1-153
Remove code that protects against division arithmetic
EXCEPLIONS . . vttt e 1-155
Compiler optimization level 1-157
Verbose accelerator builds 1-159
Optimization Pane: Signals and Parameters 1-160
Optimization Pane: Signals and Parameters Tab Overview 1-162
Default parameter behavior 1-162
Signal storage reuse 1-165
Enable local block outputs 1-167
Reuse local block outputs 1-169
Eliminate superfluous local variables (Expression folding) . 1-171
Reuse global block outputs 1-174
Minimize data copies between local and global variables . . 1-175
Inline invariant signals 1-177
Optimize global data access 1-179
Simplify array indexing 1-181
Use memcpy for vector assignment 1-183
Memcpy threshold (bytes) 1-185
Pack Boolean data into bitfields 1-186
Bitfield declarator type specifier 1-188
Loop unrolling threshold 1-190
Maximum stack size (bytes) 1-191
Pass reusable subsystem outputsas 1-193
Parameter structure, 1-195
Model Parameter Configuration Dialog Box 1-197
Optimization Pane: Stateflow 1-199
Optimization Pane: Stateflow Tab Overview 1-200
Use bitsets for storing state configuration 1-201
Use bitsets for storing Boolean data 1-203
Base storage type for automatically created enumerations . 1-205

vii

viii

Contents

Diagnostics Pane: Solver
Solver Diagnostics Overview

Algebraic loop

Minimize algebraicloop
Block priority violation
Min step size violation
Sample hit time adjusting
Consecutive zero-crossings violation
Unspecified inheritability of sample time
Solver data inconsistency
Automatic solver parameter selection
Extraneous discrete derivative signals

State name clash . ..

SimState interface checksum mismatch

SimState object from

earlierrelease

Diagnostics Pane: Sample Time
Sample Time Diagnostics Overview
Source block specifies -1 sample time
Multitask rate transition
Single task rate transition
Multitask conditionally executed subsystem
Tasks with equal priority

Enforce sample times specified by Signal Specification blocks

Diagnostics Pane: Data Validity
Data Validity Diagnostics Overview

Signal resolution . ..

Division by singular matrix
Underspecified data types
Simulation range checking

Wrap on overflow . .
Saturate on overflow

Inf or NaN block output
"rt" prefix for identifiers

Detect downcast . . .
Detect overflow

Detect underflow . . .

Detect precision loss

Detect loss of tunability

Detect read before write
Detect write afterread
Detect write after write

Multitask data store

1-206
1-207
1-209
1-211
1-213
1-215
1-217
1-219
1-221
1-223
1-225
1-227
1-229
1-230
1-232

1-233
1-234
1-235
1-237
1-239
1-241
1-243
1-245

1-247
1-249
1-250
1-252
1-254
1-257
1-259
1-261
1-263
1-265
1-267
1-269
1-271
1-273
1-275
1-277
1-279
1-281
1-283

Duplicate data store names

Detect multiple driving blocks executing at the same time

Step . oo e e

Underspecified initialization detection
Check undefined subsystem initial output . .

Check preactivation output of execution context

Check runtime output of execution context .
Array bounds exceeded
Model Verification block enabling

Diagnostics Pane: Type Conversion

Type Conversion Diagnostics Overview
Unnecessary type conversions
Vector/matrix block input conversion

32-bit integer to single precision float conversion

Detect underflow

Detect precision loss
Detect overflow

Diagnostics Pane: Connectivity

Connectivity Diagnostics Overview

Signal label mismatch

Unconnected block input ports
Unconnected block output ports

Unconnected line

Unspecified bus object at root Outport block

Element name mismatch
Mux blocks used to create bus signals

Bus signal treated as vector
Non-bus signals treated as bus signals

Repair bus selections
Invalid function-call connection

Context-dependent inputs

Diagnostics Pane: Compatibility
Compatibility Diagnostics Overview

S-function upgrades needed

Block behavior depends on frame status of signal

Diagnostics Pane: Model Referencing

Model Referencing Diagnostics Overview . .

Model block version mismatch
Port and parameter mismatch

Invalid root Inport/Outport block connection

1-285

1-287
1-289
1-291
1-295
1-297
1-301
1-303

1-305
1-306
1-307
1-308
1-310
1-311
1-313
1-315

1-317
1-319
1-320
1-321
1-322
1-323
1-324
1-326
1-328
1-331
1-334
1-336
1-338
1-340

1-342
1-343
1-344
1-345

1-347
1-348
1-349
1-351
1-353

ix

X

Contents

Unsupported data logging

Diagnostics Pane:

Saving

Saving Tab Overviewuiiurn...
Block diagram contains disabled library links
Block diagram contains parameterized library links

Diagnostics Pane:

Stateflow

Stateflow Diagnostics Overview
Unused data, events and messages
Unexpected backtracking
Invalid input data access in chart initialization
No unconditional default transitions
Transition outside natural parent
Transition shadowing

Undirected event broadcasts
Transition action specified before condition action
Read-before-write to output in Moore chart

Hardware Implementation Pane
Hardware Implementation Overview
Hardware board
Code Generation system target file

Device vendor

Device type . .

Device details

Number of bits: char
Number of bits: short
Number of bits: int
Number of bits: long
Number of bits: longlong
Number of bits: float
Number of bits: double
Number of bits: native
Number of bits: pointerc......
Largest atomic size: integer
Largest atomic size: floating-point

Byte ordering

Signed integer division rounds to
Shift right on a signed integer as arithmetic shift
Support long long
Test hardware is the same as production hardware
Test device vendor and type

Device vendor

1-358

1-360
1-361
1-362
1-364

1-366
1-367
1-368
1-370
1-372
1-374
1-376
1-377
1-378
1-380
1-382

1-383
1-386
1-387
1-389
1-390
1-392
1-404
1-405
1-407
1-409
1-411
1-413
1-415
1-416
1-417
1-419
1-420
1-422
1-424
1-426
1-428
1-430
1-431
1-433
1-445

Device type e 1-447

Number of bits: char 1-459
Number of bits: short 1-461
Number of bits: int 1-463
Number of bits: long 1-465
Number of bits: longlong 1-466
Number of bits: float 1-468
Number of bits: double 1-469
Number of bits: native 1-470
Number of bits: pointer 1-472
Largest atomic size: integer 1-473
Largest atomic size: floating-point 1-475
Byte ordering 1-477
Signed integer division rounds to 1-479
Shift right on a signed integer as arithmetic shift 1-481
Support long long 1-483
Build action 1-485
Set host COM port 1-486
Analog input reference voltage 1-487
Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial
dbaudrate 1-488
SPI clock out frequency in MHz) 1-489
... 1-490
Bitorder 1-491
IP address (Ethernet shield) 1-492
MAC address 1-493
IP address (WiFishield) 1-494
Service set identifier (SSID) 1-495
WiFi encryption 1-496
WEP Kkey e 1-497
WEP keyindex 1-498
WPA password 1-499
Communication interface 1-500
Verbose 1-501
Model Referencing Pane 1-502
Model Referencing Pane Overview 1-504
Rebuild 1-505
Never rebuild diagnostic 1-515
Enable parallel model reference builds 1-517
MATLAB worker initialization for builds 1-519
Enable strict scheduling checks for referenced export-function
models L 1-520
Total number of instances allowed per top model 1-521

xi

xii

Contents

Pass fixed-size scalar root inputs by value for code
generation
Minimize algebraic loop occurrences
Propagate all signal labels out of the model
Propagate sizes of variable-size signals
Model dependencies

Simulation Target Pane: General

Simulation Target: General Tab Overview
Ensure responsivenessc.uiueeiiin..
Echo expressions without semicolons
Ensure memory integrity
Generate typedefs for imported bus and enumeration types
Simulation target build mode

Simulation Target Pane: Symbols

Simulation Target: Symbols Tab Overview
Reserved names

Simulation Target Pane: Custom Code

Simulation Target: Custom Code Tab Overview
Parse custom code symbols
Source file
Header file
Initialize function
Terminate function
Include directories
Source files e
Libraries
Use local custom code settings (do not inherit from main
model)

Run on Target Hardware Pane

Hardware Implementation Pane Overview
Target hardware
External mode transport layer
Enable External mode
TP address
Connection typeot
Devicenmame
TCP/IP port (1024-65535)
Enable overrun detection
Device
Package name

1-523
1-525
1-527
1-530
1-532

1-535
1-536
1-539
1-541
1-543
1-545
1-546

1-548
1-549
1-550

1-552
1-554
1-555
1-557
1-558
1-559
1-560
1-561
1-563
1-564

1-565

1-567
1-569
1-570
1-571
1-572
1-573
1-574
1-575
1-576
1-577
1-578
1-579

Digital output to set onoverrun 1-580

Enable communication between two NXT bricks 1-581
Bluetooth mode 1-582
Slave Bluetooth address 1-583
Host name 1-584
User name i 1-585
Password 1-586
Build directory 1-587
Set host COM port 1-587
COM port number 1-588
Analog input reference voltage 1-588
Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial
Sbaudrate 1-589
IP address o i e 1-589
MAC addresst 1-589
TP address i 1-590
Service set identifier (SSID) 1-590
WiFi encryption 1-590
WPA password 1-590
WEP Kkey 1-590
WEP key index, 1-590

Library Browser

2|

Use the Library Browser 2-2
Libraries Pane 2-2
Blocks Pane e 2-3
Search for Blocks in the Library Browser 2-5

Library Browser Keyboard Shortcuts 2-7

Signal Properties Dialog Box

3

Signal Properties Dialog Box Overview 3-2

xiii

xiv

Signal Properties Controls 3-4

Signal name 3-4
Signal name must resolve to Simulink signal object 3-4
Show propagated signals 3-4
Logging and Accessibility Options 3-6
Log signal data, 3-6
Test point e 3-6
Logging name 3-6
Data e 3-7
Code Generation Options 3-8
Package 3-8
Storage class 3-8
Storage type qualifier 3-8
Data Transfer Options for Concurrent Execution 3-9
Specify data transfer settings 3-9
Data transfer handling option 3-9
Extrapolation method (continuous-time signals) 3-9
Initial condition 3-9
Documentation Options 3-11
Description 3-11
Document link 3-11

Simulink Preferences Window

4

Set Simulink Preferences 4-2
Main Pane e 4-3
Simulink Preferences Window Overview 4-4
Model File Change Notification 4-7
Updating or simulating the model 4-8
Action e 4-9
First editing the model 4-10
Saving the model 4-11
Autosave 4-12
Save before updating or simulating the model 4-13

Contents

Save backup when overwriting a file created in an older version

of Simulink 4-14
Warn when opening Model blocks with Normal Mode Visibility

settooff L 4-16
Notify when loading an old model 4-17

Do not load models created with a newer version of Simulink 4-18
Do not load models that are shadowed on the MATLAB path 4-19

Save a thumbnail image inside SLX files 4-20
Callback tracing 4-21
Open the sample time legend whenever sample time display is
changed 4-22
File generation control 4-23
Simulation cache folder 4-24
Code generation folder 4-25
Print e 4-25
Export 4-26
Clipboard e 4-27
File format for new models and libraries 4-27
Display Defaults for New Models Pane 4-29
Simulink Display Defaults Overview 4-29
Show masked subsystems 4-31
Show library links 4-32
Wide nonscalar lines 4-34
Show port data types 4-35
Font Defaults for New Models Pane 4-36
Simulink Font Defaults Overview 4-36
Editor Defaults Pane 4-37
Simulink Editor Defaults Overview 4-38
Use classic diagram theme 4-38
Line crossing style 4-39
Scroll wheel controls zooming 4-39
Enable smart editing features 4-39
File Toolbar 4-40
Print 4-40
Cut/Copy/Paste 4-40
Undo/Redo i 4-40
Browse Back/Forward/Up 4-40
Library/Model Configuration/Model Explorer 4-40
Refresh Blocks 4-40
Update Diagram 4-40
Simulation e 4-40

Xv

xvi

Contents

Fast Restart 4-41

Debug Model 4-41
Model Advisort 4-41
Build 4-41
Find 4-41
Data Management Defaults Pane 4-42
Simulink Data Management Defaults Overview 4-42
Package 4-42
Configuration Defaults Pane 4-44
Simulink Configuration Defaults Overview 4-44

Simulink Mask Editor

S|

Mask Editor Overview 5-2
Icon & Ports Pane 5-5
About the Icon & Ports Pane 5-5
OptIons . .. e 5-6
Icon drawing commands 5-10
Examples of drawing commands 5-11
Parameters & Dialog Pane 5-12
About the Parameters & Dialog Pane 5-12
Controls e 5-14
Dialog box 5-20
Property editor 5-24
Initialization Pane 5-28
About the Initialization Pane 5-28
Dialog variables 5-30
Initialization commands 5-30
Allow library block to modify its contents 5-30
Rules for Initialization commands 5-31
Documentation Pane 5-32
About the Documentation Pane 5-32
Mask type e 5-33

6/

Mask description 5-33
Mask help 5-33
Concurrent Execution Window

Concurrent Execution Window: Main Pane 6-2
Concurrent Execution Window Overview 6-2
Enable explicit model partitioning for concurrent behavior . . 6-5
Data Transfer Pane 6-6
Data Transfer Pane Overview 6-6
Periodic signals 6-7
Continuous signals, 6-8
Extrapolation method 6-9
Automatically handle rate transition for data transfer 6-9
CPU Pane e 6-11
CPU Pane Overviewuiiuinennn... 6-11
Name e 6-12
Hardware Node Pane 6-13
Hardware Node Pane Overview 6-13
Name 6-14
Clock Frequency [MHz] 6-14
(970 1o 6-14
Periodic Pane 6-16
Periodic Pane Overview 6-16
Name e 6-17
Periodic Trigger 6-18
Color . o e 6-19
Template e 6-19
Task Pane 6-20
Task Pane Overview 6-20
Name e 6-21
Period e 6-22
ColoT . oo 6-23

xvil

xviii

Contents

7]

Interrupt Pane 6-24
Interrupt Pane Overview 6-24
Name e 6-25
701 o 6-26
Aperiodic trigger SOUTCEo v vttt ettt e ie e 6-27
Signal number [2,SIGRTMAX-SIGRTMIN-1] 6-28
Eventname 6-29

System Tasks Pane 6-30
System Tasks Pane Overview 6-30

System Task Pane 6-31
System Task Pane Overview 6-31
Name 6-32
Period 6-33
Color . o 6-34

System Interrupt Pane 6-35
System Interrupt Pane Overview 6-35
Nameo e 6-36
Color .« . e 6-37

Profile Report Pane 6-38
Profile Report Pane Overview 6-38
Number of time steps 6-39

Simulink Simulation Stepper

Simulation Stepping Options 7-2
Simulation Stepping Options Overview 7-2
Enable stepping back, 7-4
Maximum number of saved back steps 7-5
Interval between stored back steps 7-6
Move back/forward by 7-7
Pause simulation when time reaches 7-8

Simulink Variant Manager

8

Variant Manager Overview 8-2
Variant Configuration Data Pane 8-3
Name 8-3
Configurations 8-3
Constraintsttt 8-5
Model Hierarchy Pane 8-6
Validate Configuration 8-6
Show ... 8-7
Hierarchy Table 8-7
Validation Results Pane 8-9
SOUTCE & vttt e e e 8-9
MeSSage . .o it 8-9

xix

Configuration Parameters Dialog Box

+ “Configuration Parameters Dialog Box Overview” on page 1-2
+ “Model Configuration Pane” on page 1-5

+ “Solver Pane” on page 1-8

+ “Data Import/Export Pane” on page 1-74

* “Optimization Pane: General” on page 1-120

* “Optimization Pane: Signals and Parameters” on page 1-160
* “Optimization Pane: Stateflow” on page 1-199

+ “Diagnostics Pane: Solver” on page 1-206

+ “Diagnostics Pane: Sample Time” on page 1-233

* “Diagnostics Pane: Data Validity” on page 1-247

+ “Diagnostics Pane: Type Conversion” on page 1-305

+ “Diagnostics Pane: Connectivity” on page 1-317

* “Diagnostics Pane: Compatibility” on page 1-342

+ “Diagnostics Pane: Model Referencing” on page 1-347

* “Diagnostics Pane: Saving” on page 1-360

* “Diagnostics Pane: Stateflow” on page 1-366

+ “Hardware Implementation Pane” on page 1-383

+ “Model Referencing Pane” on page 1-502

+ “Simulation Target Pane: General” on page 1-535

+ “Simulation Target Pane: Symbols” on page 1-548

* “Simulation Target Pane: Custom Code” on page 1-552

* “Run on Target Hardware Pane” on page 1-567

1 Configuration Parameters Dialog Box

Configuration Parameters Dialog Box Overview

1-2

In this section...

“Category View” on page 1-2

“List View” on page 1-3

The Configuration Parameters dialog box specifies the settings for a model’s active
configuration set. The parameters in a configuration set determine the type of solver
used, import and export settings, and other values that determine how the model runs.
See Configuration Sets for more information.

Note You can also use the Model Explorer to modify any configuration set. See “Model
Explorer Overview” for more information.

To open the dialog box, in the Simulink Editor, select Simulation > Model

Configuration Parameters, or click the Model Configuration Parameters button @ N

on the Simulink Editor toolbar. In the dialog box, you can view the configuration set in
either of two ways. The default view displays commonly used parameters by category.

The list view displays the complete list of user-visible parameters in the configuration

set. You can edit parameter values in either the category view or the list view.

Category View

The category view groups commonly used configuration parameters into categories.

To change to the category view from the list view, click Category. To display the
parameters for a specific category, click the category in the Select tree on the left side of
the dialog box.

Configuration Parameters Dialog Box Overview

4 Configuration Parameters: sldemo_fuelsys/Configuration (Active)

Category List
g

Select:
Solver
Data Import/Export
Optimization
Diagnostics

Model Referencing
Simulation Target
Code Generation

Hardware Implementation

Simulation time

Start time: 0.0

Solver options

Stop time: 2000

= o =

Type: |Variable-step

'| Solver: ‘Ude‘ﬁ (Dormand-Prince)

» Additional options

m

Apply

List View

The list view includes all user-visible parameters in the configuration set. Click List to

change to this view from the category view. You can use the list view to:

Search for specific parameters or filter parameters by category.

Sort parameters by column by clicking the column name. To restore the original sort
order, click the reset icon in the top left corner.

Edit parameter values.

View parameter dependencies by expanding the parameter description.

Get parameter names to use in scripts from the Command-Line Name column.

You can also set each of the parameters in the Configuration Parameters dialog box
using the set_param command. The list view displays the corresponding command-line

name for each parameter.

1-3

1 Configuration Parameters Dialog Box

v /|[show Al

Solver

Solver

Solver

Solver

Solver

Solver

Solver

Solver

Solver

-S} Configuration Parameters: sldemo_fuelsys/Cenfiguration (Active)

| = | Parameter

Start time

Simulation start time. Note that the values that you specify as block ..

Stop time
Simulation stop time.

Type
Choose a variable or fixed-step solver,

Solver
Choose a solver,

Fixed-step size (fundamental sample time)

Specify the step size used by the selected fixed-step solver.

Extrapolation order
Higher order methods are more expensive but can produce a soluti...

Number of Newton's iterations
More iterations can produce a more accurate solution.

Max step size
Maximum step size for a variable-step solver.

Min step size
Minimum step size for a variable-step solver.

Value

0.0
2000
ariable-step |-

oded5 (Dormand-Prince) | =

To enable this parameter
select Fixed-step for Type”

Variable-step »

select Unconstrained for "Periodic sample time constraint™

Unconstrained =

auto

auto

old [

Command-Line Name

StartTime

StopTime

SolverType

Sclver

FixedStep

ExtrapolationOrder

NumberNewtonIterations

Max3tep

MinStep

0K

H Cancel H Help Apply

1-4

Model Configuration Pane

Model Configuration Pane

In this section...

“Model Configuration Overview” on page 1-5
“Name” on page 1-6
“Description” on page 1-7

“Configuration Parameters (List View Only)” on page 1-7

Model Configuration Overview
View or edit the name and description of your configuration set.
In the Model Explorer you can edit the name and description of your configuration sets.

In the Model Explorer or Simulink Preferences window you can edit the description

of your template configuration set, Model Configuration Preferences. Go to the Model
Configuration Preferences to edit the template Configuration Parameters to be used as
defaults for new models.

When editing the Model Configuration preferences, you can click Restore to Default
Preferences to restore the default configuration settings for creating new models. These
underlying defaults cannot be changed.

1-5

1 Configuration Parameters Dialog Box

Name
Specify the name of your configuration set.
Settings

Default: Configuration (for Active configuration set) or Configuration
Preferences (for default configuration set).

Edit the name of your configuration set.

In the Model Configuration Preferences, the name of the default configuration is always
Configuration Preferences, and cannot be changed.

1-6

Model Configuration Pane

Description

Specify a description of your configuration set.
Settings

No Default

Enter text to describe your configuration set.

Configuration Parameters (List View Only)

No further help documentation is available for this parameter.

1-7

1 Configuration Parameters Dialog Box

Solver Pane

' Configuration Parameters: vdp/Configuration (Active)

Category|

Select:

Solver
Data Import/Export
> Optimization
> Diagnostics
Hardware Implementation
Model Referencing
> Simulation Target
> Code Generation

Simulation time

Start time: 0.0

Solver options

Stop time: 20

Type: |Variable-step

'l Solver: [0de45 (Dormand-Prince)

> Additional options

Max step size: auto
Min step size: auto

Initial step size: auto

Number of consecutive min steps:

Zero-crossing options

Relative tolerance: 1e-3

Absolute tolerance: le-6

Shape preservation: | Disable All

1

Zero-crossing control: |Use local settings

- | Algorithm: Nonadaptive

Time tolerance: 10*128%eps

Number of consecutive zero crossings:

Tasking and sample time options

Tasking mode for periedic sample times:
[T] Automatically handle rate transition for data transfer

[7] Higher priority value indicates higher task priority

Signal threshold: |auto

1000

SingleTasking

oK][Cancel][

Help

Apply

m

In this section...

1-8

“Solver Overview” on page 1-10
“Start time” on page 1-12

“Stop time” on page 1-13
“Type” on page 1-15

“Solver” on page 1-17

“Max step size” on page 1-24
“Initial step size” on page 1-26

“Min step size” on page 1-28

Solver Pane

In this section...

“Relative tolerance” on page 1-30

“Absolute tolerance” on page 1-32

“Shape preservation” on page 1-34

“Maximum order” on page 1-36

“Solver reset method” on page 1-38

“Number of consecutive min steps” on page 1-40

“Solver Jacobian Method” on page 1-42

“Tasking mode for periodic sample times” on page 1-44
“Automatically handle rate transition for data transfer” on page 1-46
“Deterministic data transfer” on page 1-48

“Higher priority value indicates higher task priority” on page 1-50
“Zero-crossing control” on page 1-51

“Time tolerance” on page 1-53

“Number of consecutive zero crossings” on page 1-55
“Algorithm” on page 1-57

“Signal threshold” on page 1-59

“Periodic sample time constraint” on page 1-61
“Fixed-step size (fundamental sample time)” on page 1-64
“Sample time properties” on page 1-66

“Extrapolation order” on page 1-69

“Number Newton's iterations” on page 1-71

“Allow tasks to execute concurrently on target” on page 1-72

1 Configuration Parameters Dialog Box

1-10

Solver Overview

Specify the simulation start and stop time, and the solver configuration for the
simulation. Use the Solver pane to set up a solver for a model's active configuration set.

A solver computes a dynamic system's states at successive time steps over a specified
time span, using information provided by the model. Once the model compiles, the Solver
Information tooltip displays

+ Compiled solver name

+ Step size (Max step size or Fixed step size)

Once the model compiles, the status bar displays the solver used for compiling and a
carat () when:

* Simulink selects a different solver during compilation.

* You set the step size to auto. The Solver Information tooltip displays the step size
that Simulink calculated.

Configuration

1 Select a solver type from the Type list.

2 Select a solver from the Solver list.

3 Set the parameters displayed for the selected type and solver combination.
4 Apply the changes.

Tips
* To open the Solver pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Solver.

* Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

+ Fixed-step solver type is required for code generation, unless you use an S-function
or RSim target.

* Variable-step solver type can significantly shorten the time required to simulate
models in which states change rapidly or which contain discontinuities.

See Also

+ “Solvers”

Solver Pane

+ “Specify Simulation Start and Stop Time”

1-11

1 Configuration Parameters Dialog Box

1-12

Start time

Specify the start time for the simulation or generated code as a double-precision value,
scaled to seconds.

Settings
Default: 0.0

+ A start time must be less than or equal to the stop time. For example, use a nonzero
start time to delay the start of a simulation while running an initialization script.

* The values of block parameters with initial conditions must match the initial
condition settings at the specified start time.

* Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

Command-Line Information
Parameter: StartTime
Type: string

Value: any valid value

Default: "0.0"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution 0.0

See Also

+ “Specify Simulation Start and Stop Time”

Solver Pane

Stop time

Specify the stop time for the simulation or generated code as a double-precision value,
scaled to seconds.

Settings
Default: 10

* Stop time must be greater than or equal to the start time.

+ Specify inf to run a simulation or generated program until you explicitly pause or
stop it.

+ If the stop time is the same as the start time, the simulation or generated program
runs for one step.

* Simulation time is not the same as clock time. For example, running a simulation for
10 seconds usually does not take 10 seconds. Total simulation time depends on factors
such as model complexity, solver step sizes, and computer speed.

+ If your model includes blocks that depend on absolute time and you are creating a
design that runs indefinitely, see “Blocks That Depend on Absolute Time”.

Command-Line Information

Parameter: StopTime
Type: string

Value: any valid value
Default: "10.0"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution A positive value
See Also

* “Blocks That Depend on Absolute Time”

1-13

1 Configuration Parameters Dialog Box

+ “Use Blocks to Stop or Pause a Simulation”

+ “Specify Simulation Start and Stop Time”

1-14

Solver Pane

Type

Select the type of solver you want to use to simulate your model.
Settings

Default: Variable-step

Variable-step
Step size varies from step to step, depending on model dynamics. A variable-step
solver:
* Reduces step size when model states change rapidly, to maintain accuracy.
+ Increases step size when model states change slowly, to avoid unnecessary steps.
Variable-step is recommended for models in which states change rapidly or that
contain discontinuities. In these cases, a variable-step solver requires fewer time

steps than a fixed-step solver to achieve a comparable level of accuracy. This can
significantly shorten simulation time.

Fixed-step

Step size remains constant throughout the simulation.

Required for code generation, unless you use an S-function or RSim target.

Note: The solver computes the next time as the sum of the current time and the step size.

Dependencies

Selecting Variable-step enables the following parameters:

* Solver

* Max step size

* Min step size

* Initial step size

* Relative tolerance
+ Absolute tolerance

+ Shape preservation

1-15

1 Configuration Parameters Dialog Box

1-16

+ Initial step size

+ Number of consecutive min steps

+ Zero-crossing control
* Time tolerance

+ Algorithm

Selecting Fixed-step enables the following parameters:

+ Solver

* Periodic sample time constraint

+ Fixed-step size (fundamental sample time)

+ Tasking mode for periodic sample times

* Higher priority value indicates higher task priority

+ Automatically handle rate transitions for data transfers

Command-Line Information

Parameter: SolverType
Type: string

Value: "Variable-step” | "Fixed-step”

Default: "Variable-step”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

+ “Solvers”
+ “Solvers”

* “Purely Discrete Systems”

Setting

No impact
No impact
No impact

Fixed-step

Solver Pane

Solver

Select the solver you want to use to compute the states of the model during simulation or
code generation.

Settings
Select from these types:

+ “Fixed-step Solvers” on page 1-17
+ “Variable-step Solvers” on page 1-18

The default setting for new models is VariableStepAuto.

Fixed-step Solvers
Default:FixedStepAuto

auto

Computes the state of the model using a fixed-step solver that auto solver selects.

At the time the model compiles, auto changes to a fixed-step solver that auto solver
selects based on the model dynamics. Click on the solver hyperlink in the lower right
corner of the model to accept or change this selection.

ode3 (Bogacki-Shampine)

Computes the state of the model at the next time step as an explicit function of the
current value of the state and the state derivatives, using the Bogacki-Shampine
Formula integration technique to compute the state derivatives. In the following
example, X is the state, DX 1s the state derivative, and h is the step size:

X(n+1) = X(n) + h * DX(n)
Discrete (no continuous states)
Computes the time of the next time step by adding a fixed step size to the current

time.

Use this solver for models with no states or discrete states only, using a fixed step
size. Relies on the model's blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on the size of

the steps taken by the simulation: the smaller the step size, the more accurate the
results but the longer the simulation takes.

1-17

1 Configuration Parameters Dialog Box

Note: The fixed-step discrete solver cannot be used to simulate models that have
continuous states.

ode8 (Dormand-Prince RK8(7))

Uses the eighth-order Dormand-Prince formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives approximated at intermediate points.

ode5 (Dormand-Prince)

Uses the fifth-order Dormand-Prince formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives approximated at intermediate points.

ode4 (Runge-Kutta)

Uses the fourth-order Runge-Kutta (RK4) formula to compute the model state at the
next time step as an explicit function of the current value of the state and the state
derivatives.

ode2 (Heun)

Uses the Heun integration method to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives.

odel (Euler)

Uses the Euler integration method to compute the model state at the next time step
as an explicit function of the current value of the state and the state derivatives.

odeldx (extrapolation)

Uses a combination of Newton's method and extrapolation from the current value to
compute the model's state at the next time step, as an implicit function of the state
and the state derivative at the next time step. In the following example, X is the
state, DX is the state derivative, and h is the step size:

X(n+1) - X(n) - h * DX(n+1) = 0

This solver requires more computation per step than an explicit solver, but is more
accurate for a given step size.

Variable-step Solvers
Default:VariableStepAuto

auto

1-18

Solver Pane

Computes the state of the model using a variable-step solver that auto solver selects.
At the time the model compiles, auto changes to a variable-step solver that auto
solver selects based on the model dynamics. Click on the solver hyperlink in the
lower right corner of the model to accept or change this selection.

ode45 (Dormand-Prince)

Computes the model's state at the next time step using an explicit Runge-Kutta (4,5)
formula (the Dormand-Prince pair) for numerical integration.

ode45 is a one-step solver, and therefore only needs the solution at the preceding
time point.

Use ode45 as a first try for most problems.

Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies depending on
the rate of change of the model's states.

Use this solver for models with no states or discrete states only, using a variable step
size.

ode23 (Bogacki-Shampine)

Computes the model's state at the next time step using an explicit Runge-Kutta (2,3)
formula (the Bogacki-Shampine pair) for numerical integration.

ode23 is a one-step solver, and therefore only needs the solution at the preceding
time point.

ode23 is more efficient than ode45 at crude tolerances and in the presence of mild
stiffness.
odel13 (Adams)

Computes the model's state at the next time step using a variable-order Adams-
Bashforth-Moulton PECE numerical integration technique.

0del13 is a multistep solver, and thus generally needs the solutions at several
preceding time points to compute the current solution.

0del13 can be more efficient than ode45 at stringent tolerances.

odel5s (stiff/NDF)

Computes the model's state at the next time step using variable-order numerical
differentiation formulas (NDFs). These are related to, but more efficient than the
backward differentiation formulas (BDFs), also known as Gear's method.

1-19

1 Configuration Parameters Dialog Box

1-20

odel5s is a multistep solver, and thus generally needs the solutions at several
preceding time points to compute the current solution.

odel5s is efficient for stiff problems. Try this solver if ode45 fails or is inefficient.

ode23s (stiff/Mod. Rosenbrock)

Computes the model's state at the next time step using a modified Rosenbrock
formula of order 2.

ode23s is a one-step solver, and therefore only needs the solution at the preceding
time point.

ode23s is more efficient than odel5s at crude tolerances, and can solve stiff
problems for which ode15s is ineffective.

ode23t (Mod. stiff/Trapezoidal)

Computes the model's state at the next time step using an implementation of the
trapezoidal rule with a “free” interpolant.

ode23t is a one-step solver, and therefore only needs the solution at the preceding
time point.

Use ode23t if the problem is only moderately stiff and you need a solution with no
numerical damping.

ode23tb (stiff/TR-BDF2)

Computes the model's state at the next time step using a multistep implementation
of TR-BDF2, an implicit Runge-Kutta formula with a trapezoidal rule first stage,
and a second stage consisting of a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both stages.

ode23tb is more efficient than odel5s at crude tolerances, and can solve stiff
problems for which odel15s is ineffective.

Tips

Identifying the optimal solver for a model requires experimentation. For an in-depth
discussion, see “Solvers”.

The optimal solver balances acceptable accuracy with the shortest simulation time.

Simulink software uses a discrete solver for any model with no states or discrete
states only, even if you specify a continuous solver.

A smaller step size increases accuracy, but also increases simulation time.

Solver Pane

* The degree of computational complexity increases for oden, as n increases.

* As computational complexity increases, the accuracy of the results also increases.
Dependencies

Selecting the odel (Euler), ode2 (Huen), ode 3 (Bogacki-Shampine), ode4
(Runge-Kutta), ode 5 (Dormand-Prince), or Discrete (no continuous
states) fixed-step solvers enables the following parameters:

+ Fixed-step size (fundamental sample time)

+ Periodic sample time constraint

+ Tasking mode for periodic sample times

* Automatically handle rate transition for data transfers

* Higher priority value indicates higher task priority
Selecting odel4x (extrapolation) enables the following parameters:

+ Fixed-step size (fundamental sample time)

+ Extrapolation order

* Number Newton's iterations

* Periodic sample time constraint

+ Tasking mode for periodic sample times

* Automatically handle rate transition for data transfers

* Higher priority value indicates higher task priority

Selecting the Discrete (no continuous states) variable-step solver enables the
following parameters:

+ Max step size

* Automatically handle rate transition for data transfers
+ Higher priority value indicates higher task priority

+ Zero-crossing control

* Time tolerance

* Number of consecutive zero crossings

+ Algorithm

1-21

1 Configuration Parameters Dialog Box

1-22

Selecting ode45 (Dormand-Prince), ode23 (Bogacki-Shampine), odel13
(Adams), or ode23s (stiff/Mod. Rosenbrock) enables the following parameters:

Max step size

Min step size

Initial step size

Relative tolerance

Absolute tolerance

Shape preservation

Number of consecutive min steps

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Number of consecutive zero crossings

Algorithm

Selecting odel5s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or ode23th
(stiff/TR-BDF2) enables the following parameters:

Max step size

Min step size

Initial step size

Solver reset method

Number of consecutive min steps

Relative tolerance

Absolute tolerance

Shape preservation

Maximum order

Automatically handle rate transition for data transfers
Higher priority value indicates higher task priority
Zero-crossing control

Time tolerance

Solver Pane

+ Number of consecutive zero crossings

+ Algorithm

Command-Line Information

Parameter: Solver

Type: string

Value: "VariableStepAuto™ | "VariableStepDiscrete™ | "ode45" |
"ode23" | "o0dell3" | "odel5s” | "ode23s" | "ode23t® | "ode23tb* |
"FixedStepAuto® | "FixedStepDiscrete® |"ode8"| "ode5" | "oded4" |
"ode3" | "ode2" | "odel" | "odel4dx"

Default: "ode45*"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Discrete (no continuous states)
See Also

+ “Solvers”
+ “Solvers”

* “Purely Discrete Systems”

1-23

1 Configuration Parameters Dialog Box

1-24

Max step size

Specify the largest time step that the solver can take.

Settings

Default: auto

For the discrete solver, the default value (auto) is the model's shortest sample time.

For continuous solvers, the default value (auto) is determined from the start and stop
times. If the stop time equals the start time or is in¥, Simulink chooses 0.2 seconds
as the maximum step size. Otherwise, it sets the maximum step size to

h _ tstop ~Lstart

max 5 O

For Sine and Signal Generator source blocks, Simulink calculates the max step size
using this heuristic:

h =Inin tstnp_tdart 1 1
e 50 ’\3)| Freq,,

where Freq,,,. is the maximum frequency (Hz) of these blocks in the model.

Tips

Generally, the default maximum step size is sufficient. If you are concerned about the
solver missing significant behavior, change the parameter to prevent the solver from
taking too large a step.

Max step size determines the step size of the variable-step solver.

If the time span of the simulation is very long, the default step size might be too large
for the solver to find the solution.

If your model contains periodic or nearly periodic behavior and you know the period,
set the maximum step size to some fraction (such as 1/4) of that period.

In general, for more output points, change the refine factor, not the maximum step
size.

Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Solver Pane

Command-Line Information
Parameter: MaxStep
Type: string

Value: any valid value
Default: "auto”

Recommended Settings

Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

“Purely Discrete Systems”

Setting

No impact
No impact
No impact

No impact

1-25

1 Configuration Parameters Dialog Box

1-26

Initial step size

Specify the size of the first time step that the solver takes.
Settings

Default: auto

By default, the solver selects an initial step size by examining the derivatives of the
states at the start time.

Tips

* Be careful when increasing the initial step size. If the first step size is too large, the
solver might step over important behavior.

* The initial step size parameter is a suggested first step size. The solver tries this step
size but reduces it if error criteria are not satisfied.
Dependencies

This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: InitialStep
Type: string

Value: any valid value
Default: "auto”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Purely Discrete Systems”

* “How Performance Advisor Improves Simulation Performance”
p

Solver Pane

1-27

1 Configuration Parameters Dialog Box

Min step size

Specify the smallest time step that the solver can take.

Settings

Default: auto

* The default value (auto) sets an unlimited number of warnings and a minimum step

size on the order of machine precision.

* You can specify either a real number greater than zero, or a two-element vector
for which the first element is the minimum step size and the second element is the
maximum number of minimum step size warnings before an error was issued.

Tips
+ If the solver takes a smaller step to meet error tolerances, it issues a warning

indicating the current effective relative tolerance.

* Setting the second element to zero results in an error the first time the solver must
take a step smaller than the specified minimum. This is equivalent to changing the
Min step size violation diagnostic to error on the Diagnostics pane (see “Min
step size violation” on page 1-215).

+ Setting the second element to -1 results in an unlimited number of warnings. This is
also the default if the input is a scalar.

+ Min step size determines the step size of the variable step ODE solver. The size is
limited by the smallest discrete sample time in the model.

Dependencies
This parameter is enabled only if the solver Type is set to Variable-step.

Command-Line Information
Parameter: MinStep
Type: string

Value: any valid value
Default: "auto”

Recommended Settings

Application Setting
Debugging No impact

1-28

Solver Pane

Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Purely Discrete Systems”

“Min step size violation” on page 1-215

1-29

1 Configuration Parameters Dialog Box

1-30

Relative tolerance

Specify the largest acceptable solver error, relative to the size of each state during each
time step. If the relative error exceeds this tolerance, the solver reduces the time step
size.

Settings
Default: 1e-3

+ Setting the relative tolerance to auto is actually the default value of 1e-3.
+ The relative tolerance is a percentage of the state's value.

* The default value (1e-3) means that the computed state i1s accurate to within 0.1%.
Tips

* The acceptable error at each time step is a function of both the Relative tolerance
and the Absolute tolerance. For more information about how these settings work
together, see “ Error Tolerances for Variable-Step Solvers”.

* During each time step, the solver computes the state values at the end of the step and
also determines the local error — the estimated error of these state values. If the error
is greater than the acceptable error for any state, the solver reduces the step size and
tries again.

* The default relative tolerance value is sufficient for most applications. Decreasing the
relative tolerance value can slow down the simulation.

+ To check the accuracy of a simulation after you run it, you can reduce the relative
tolerance to le-4 and run it again. If the results of the two simulations are not
significantly different, you can feel confident that the solution has converged.

Dependencies
This parameter is enabled only if you set:

* Solver Type to Variable-step.
+ Solver to a continuous variable-step solver.
This parameter works along with Absolute tolerance to determine the acceptable error

at each time step. For more information about how these settings work together, see “
Error Tolerances for Variable-Step Solvers”.

Solver Pane

Command-Line Information
Parameter: RelTol
Type: string

Value: any valid value
Default: "1e-3*

Recommended Settings
Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No impact

+ “Error Tolerances for Variable-Step Solvers”

“How Performance Advisor Improves Simulation Performance”
p

1-31

1 Configuration Parameters Dialog Box

Absolute tolerance

Specify the largest acceptable solver error, as the value of the measured state approaches
zero. If the absolute error exceeds this tolerance, the solver reduces the time step size.

Settings
Default: auto

* The default value (auto) initially sets the absolute tolerance for each state to le-6.
As the simulation progresses, the absolute tolerance for each state is reset to the
maximum value that the state has thus far assumed times the relative tolerance for
that state.

For example, if a state goes from 0 to 1 and the Relative tolerance is 1le-3, then by
the end of the simulation, the Absolute tolerance is set to 1e-3.

+ If the computed setting is not suitable, you can determine an appropriate setting
yourself.

Tips

* The acceptable error at each time step is a function of both the Relative tolerance
and the Absolute tolerance. For more information about how these settings work
together, see “ Error Tolerances for Variable-Step Solvers”.

+ The Integrator, Second-Order Integrator, Variable Transport Delay, Transfer Fen,
State-Space, and Zero-Pole blocks allow you to specify absolute tolerance values
for solving the model states that they compute or that determine their output. The
absolute tolerance values that you specify in these blocks override the global setting
in the Configuration Parameters dialog box.

* You might want to override the Absolute tolerance setting using blocks if the
global setting does not provide sufficient error control for all of your model states, for
example, if they vary widely in magnitude.

+ If you set the Absolute tolerance too low, the solver might take too many steps
around near-zero state values, and thus slow the simulation.

+ To check the accuracy of a simulation after you run it, you can reduce the absolute
tolerance and run it again. If the results of the two simulations are not significantly
different, you can feel confident that the solution has converged.

+ If your simulation results do not seem accurate, and your model has states whose
values approach zero, the Absolute tolerance may be too large. Reduce the

1-32

Solver Pane

Absolute tolerance to force the simulation to take more steps around areas of near-
zero state values.

Dependencies
This parameter is enabled only if you set:

+ Solver Type to Variable-step.

* Solver to a continuous variable-step solver.

This parameter works along with Relative tolerance to determine the acceptable error
at each time step. For more information about how these settings work together, see “
Error Tolerances for Variable-Step Solvers”.

Command:-Line Information for Configuration Parameters
Parameter: AbsTol

Type: string | numeric value

Value: "auto” | positive real scalar

Default: "auto*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Error Tolerances for Variable-Step Solvers”

* “How Performance Advisor Improves Simulation Performance”
p

1-33

1 Configuration Parameters Dialog Box

1-34

Shape preservation

At each time step use derivative information to improve integration accuracy.
Settings

Default: Disable all

Disable all

Do not perform Shape preservation on any signals.
Enable all

Perform Shape preservation on all signals.
Tips

* The default setting (Disable all) usually provides good accuracy for most models.

+ Setting to Enable all will increase accuracy in those models having signals whose
derivative exhibits a high rate of change, but simulation time may be increased.
Dependencies

This parameter is enabled only if you use a continuous-step solver.

Command-Line Information

Parameter: ShapePreserveControl
Type: string

Value: "EnableAll | "DisableAll
Default: "DisableAll

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Zero-Crossing Detection”

Solver Pane

1-35

1 Configuration Parameters Dialog Box

1-36

Maximum order

Select the order of the numerical differentiation formulas (NDFs) used in the odel5s
solver.

Settings
Default: 5
5

Specifies that the solver uses fifth order NDF's.
1

Specifies that the solver uses first order NDFs.
2

Specifies that the solver uses second order NDFs.
3

Specifies that the solver uses third order NDFs.
4

Specifies that the solver uses fourth order NDFs.
Tips

+ Although the higher order formulas are more accurate, they are less stable.

+ If your model is stiff and requires more stability, reduce the maximum order to 2 (the
highest order for which the NDF formula is A-stable).

+ As an alternative, you can try using the ode23s solver, which is a lower order (and A-
stable) solver.

Dependencies
This parameter is enabled only if Solver is set to odel5s.

Command-Line Information
Parameter: MaxOrder
Type: integer

Value: 1123|415
Default: 5

Solver Pane

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No impact

+ “Error Tolerances for Variable-Step Solvers”

“How Performance Advisor Improves Simulation Performance”
p

1-37

1 Configuration Parameters Dialog Box

1-38

Solver reset method

Select how the solver behaves during a reset, such as when it detects a zero crossing.
Settings

Default: Fast

Fast
Specifies that the solver will not recompute the Jacobian matrix at a solver reset.
Robust
Specifies that the solver will recompute the Jacobian matrix needed by the
integration step at every solver reset.
Tips
+ Selecting Fast speeds up the simulation. However, it can result in incorrect solutions
in some cases.

+ If you suspect that the simulation is giving incorrect results, try the Robust setting.
If there is no difference in simulation results between the fast and robust settings,
revert to the fast setting.

Dependencies

This parameter is enabled only if you select one of the following solvers:

+ odel5s (Stiff/NDF)
+ o0de23t (Mod. Stiff/Trapezoidal)
+ ode23tb (Stiff/TR-BDF2)

Command-Line Information
Parameter: SolverResetMethod
Type: string

Value: "Fast” | "Robust”
Default: "Fast*”

Recommended Settings

Application Setting
Debugging No impact

Solver Pane

Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Choose a Solver”

1-39

1 Configuration Parameters Dialog Box

1-40

Number of consecutive min steps

Specify the maximum number of consecutive minimum step size violations allowed
during simulation.

Settings
Default: 1

* A minimum step size violation occurs when a variable-step continuous solver takes a
smaller step than that specified by the Min step size property (see “Min step size” on
page 1-28).

* Simulink software counts the number of consecutive violations that it detects. If
the count exceeds the value of Number of consecutive min steps, Simulink
software displays either a warning or error message as specified by the Min step size
violation diagnostic (see “Min step size violation” on page 1-215).

Dependencies
This parameter is enabled only if you set:

+ Solver Type to Variable-step.

* Solver to a continuous variable step solver.

Command-Line Information

Parameter: MaxConsecutiveMinStep
Type: string

Value: any valid value

Default: 1"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Choose a Solver”

Solver Pane

* “Min step size violation” on page 1-215

+ “Min step size” on page 1-28

141

1 Configuration Parameters Dialog Box

1-42

Solver Jacobian Method

Settings

Default: Auto

auto

Sparse perturbation
Full perturbation
Sparse analytical

Full analytical

Tips

* The default setting (Auto) usually provides good accuracy for most models.
Dependencies

This parameter is enabled only if an implicit solver is used.

Command-Line Information

Parameter: SolverJacobianMethodControl

Type: string

Value: "auto” | "SparsePerturbation” | "FullPerturbation”
"SparseAnalytical”® | "FullAnalytical*

Default: "auto”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Choose a Solver”

Solver Pane

1-43

1 Configuration Parameters Dialog Box

Tasking mode for periodic sample times
Select how blocks with periodic sample times execute.
Settings

Default: Auto

Auto

Specifies that single-tasking execution is used if’

* Your model contains one sample time.

* Your model contains a continuous and a discrete sample time, and the fixed-step
size 1s equal to the discrete sample time.

Selects multitasking execution for models operating at different sample rates.
SingleTasking

Specifies that all blocks are processed through each stage of simulation together (for
example, calculating output and updating discrete states).

MultiTasking
Specifies that groups of blocks with the same execution priority are processed
through each stage of simulation (for example, calculating output and updating
discrete states) based on task priority. Multitasking mode helps to create valid

models of real-world multitasking systems, where sections of your model represent
concurrent tasks.

Tips
* For multirate models, Simulink treats an Auto setting as a MultiTasking setting.

* A model that is multirate and uses multitasking (that is, uses a setting of Auto or
Mul tiTasking) cannot reference a multirate model that uses a SingleTasking
setting.

* The Single task rate transition and Multitask rate transition parameters on the
Diagnostics > Sample Time pane allow you to adjust error checking for sample rate
transitions between blocks that operate at different sample rates.

Dependency

This parameter is enabled by selecting Fixed-step solver type.

1-44

Solver Pane

Command-Line Information
Parameter: SolverMode
Type: string

Value: "Auto” | "SingleTasking®™ | "MultiTasking”

Default: "Auto”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

Rate Transition block

“Time-Based Scheduling”

“Model Execution and Rate Transitions”
“Handle Rate Transitions”

“Solver Pane” on page 1-8

1-45

1 Configuration Parameters Dialog Box

Automatically handle rate transition for data transfer

Specify whether Simulink software automatically inserts hidden Rate Transition blocks
between blocks that have different sample rates to ensure: the integrity of data transfers
between tasks; and optional determinism of data transfers for periodic tasks.

Settings
Default: Off

|7On

Inserts hidden Rate Transition blocks between blocks when rate transitions are
detected. Handles rate transitions for asynchronous and periodic tasks. Simulink
software adds the hidden blocks configured to ensure data integrity for data
transfers. Selecting this option also enables the parameter Deterministic data
transfer, which allows you to control the level of data transfer determinism for
periodic tasks.

I off

Does not insert hidden Rate Transition blocks when rate transitions are detected. If
Simulink software detects invalid transitions, you must adjust the model such that

the sample rates for the blocks in question match or manually add a Rate Transition
block.

See “ Rate Transition Block Options” in the Simulink Coder™ documentation for further
details.

Tips

+ Selecting this parameter allows you to handle rate transition issues automatically.
This saves you from having to manually insert Rate Transition blocks to avoid invalid
rate transitions, including invalid asynchronous-to-periodic and asynchronous-to-
asynchronous rate transitions, in multirate models.

* For asynchronous tasks, Simulink software configures the inserted blocks to ensure
data integrity but not determinism during data transfers.

Command-Line Information

Parameter: AutolnsertRateTranBlk
Type: string

Value: "on”" | "off"

1-46

Solver Pane

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact for simulation or during development
Off for production code generation
Efficiency No impact
Safety precaution Off
See Also

+ “Rate Transition Block Options”

1-47

1 Configuration Parameters Dialog Box

1-48

Deterministic data transfer

Control whether the Rate Transition block parameter Ensure deterministic data
transfer (maximum delay) is set for auto-inserted Rate Transition blocks

Default: Whenever possible

Always

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is always set for auto-inserted Rate Transition blocks.

If Always is selected and if a model needs to auto-insert a Rate Transition block to
handle a rate transition that is not between two periodic sample times related by an
integer multiple, Simulink errors out.

Whenever possible

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is set for auto-inserted Rate Transition blocks whenever possible.
If an auto-inserted Rate Transition block handles data transfer between two periodic
sample times that are related by an integer multiple, Ensure deterministic data
transfer (maximum delay) is set; otherwise, it is cleared.

Never (minimum delay)

Specifies that the block parameter Ensure deterministic data transfer
(maximum delay) is never set for auto-inserted Rate Transition blocks.

Note: Clearing the Rate Transition block parameter Ensure deterministic data
transfer (maximum delay) can provide reduced latency for models that do not require
determinism. See the description of Ensure deterministic data transfer (maximum
delay) on the Rate Transition block reference page for more information.

Dependencies

This parameter is enabled only if Automatically handle rate transition for data
transfer is checked.

Command-Line Information

Parameter: InsertRTBMode

Type: string

Value: "Always” | "Whenever possible™| "Never (minimum delay)”

Solver Pane

Default: "Whenever possible*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution *Whenever possible*
See Also

+ “Rate Transition Block Options”

1-49

1 Configuration Parameters Dialog Box

1-50

Higher priority value indicates higher task priority

Specify whether the real-time system targeted by the model assigns higher or lower
priority values to higher priority tasks when implementing asynchronous data transfers

Settings
Default: Off

|7On

Real-time system assigns higher priority values to higher priority tasks, for example,
8 has a higher task priority than 4. Rate Transition blocks treat asynchronous
transitions between rates with lower priority values and rates with higher priority
values as low-to-high rate transitions.

I off

Real-time system assigns lower priority values to higher priority tasks, for example,
4 has a higher task priority than 8. Rate Transition blocks treat asynchronous
transitions between rates with lower priority values and rates with higher priority
values as high-to-low rate transitions.

Command-Line Information

Parameter: PositivePriorityOrder
Type: string

Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Rate Transitions and Asynchronous Blocks”

Solver Pane

Zero-crossing control

Enables zero-crossing detection during variable-step simulation of the model. For most
models, this speeds up simulation by enabling the solver to take larger time steps.

Settings
Default: Use local settings

Use local settings
Specifies that zero-crossing detection be enabled on a block-by-block basis. For a list
of applicable blocks, see “Simulation Phases in Dynamic Systems”
To specify zero-crossing detection for one of these blocks, open the block's parameter
dialog box and select the Enable zero-crossing detection option.

Enable all
Enables zero-crossing detection for all blocks in the model.

Disable all

Disables zero-crossing detection for all blocks in the model.
Tips

* For most models, enabling zero-crossing detection speeds up simulation by allowing
the solver to take larger time steps.

+ If a model has extreme dynamic changes, disabling this option can speed up the
simulation but can also decrease the accuracy of simulation results. See“Zero-
Crossing Detection” for more information.

+ Selecting Enable all or Disable all overrides the local zero-crossing detection
setting for individual blocks.

Dependencies
This parameter is enabled only if the solver Type is set to Variable-step.

Selecting either Use local settings or Enable all enables the following
parameters:

*+ Time tolerance

+ Number of consecutive zero crossings

1-51

1 Configuration Parameters Dialog Box

+ Algorithm

Command-Line Information

Parameter: ZeroCrossControl

Type: string

Value: "UselLocalSettings”™ | "EnableAll" | "DisableAll"
Default: "UselLocalSettings*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Zero-Crossing Detection”
“Number of consecutive zero crossings” on page 1-55
“Consecutive zero-crossings violation” on page 1-219

+ “Time tolerance” on page 1-53

1-52

Solver Pane

Time tolerance

Specify a tolerance factor that controls how closely zero-crossing events must occur to be
considered consecutive.

Settings

Default: 10*128*eps

Simulink software defines zero crossings as consecutive if the time between events
is less than a particular interval. The following figure depicts a simulation timeline
during which Simulink software detects zero crossings ZC; and ZC,, bracketed at
successive time steps t; and ts.

DR S

i i
zc, zZc,
1 1 .
L'd L'd "

b 2

Simulink software determines that the zero crossings are consecutive if

dt < RelTolZC * t,

where dt is the time between zero crossings and RelTolZC is the Time tolerance.

Simulink software counts the number of consecutive zero crossings that it detects.

If the count exceeds the value of Number of consecutive zero crossings allowed,
Simulink software displays either a warning or error as specified by the Consecutive
zero-crossings violation diagnostic (see “Consecutive zero-crossings violation” on
page 1-219).

Tips

Simulink software resets the counter each time it detects nonconsecutive zero
crossings (successive zero crossings that fail to meet the relative tolerance setting);
therefore, decreasing the relative tolerance value may afford your model's behavior
more time to recover.

1-53

1 Configuration Parameters Dialog Box

If your model experiences excessive zero crossings, you can also increase the Number
of consecutive zero crossings to increase the threshold at which Simulink
software triggers the Consecutive zero-crossings violation diagnostic.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either Use local
settings or Enable all.

Command-Line Information

Parameter: ConsecutiveZCsStepRelTol
Type: string

Value: any valid value

Default: "10*128*eps*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Zero-Crossing Detection”
“Number of consecutive zero crossings” on page 1-55
+ “Zero-crossing control” on page 1-51

+ “Consecutive zero-crossings violation” on page 1-219

1-54

Solver Pane

Number of consecutive zero crossings

Specify the number of consecutive zero crossings that can occur before Simulink software
displays a warning or an error.

Settings

Default: 1000

Simulink software counts the number of consecutive zero crossings that it detects. If
the count exceeds the specified value, Simulink software displays either a warning or
an error as specified by the Consecutive zero-crossings violation diagnostic (see

“Consecutive zero-crossings violation” on page 1-219).

Simulink software defines zero crossings as consecutive if the time between events is
less than a particular interval (see “Time tolerance” on page 1-53).

Tips

If your model experiences excessive zero crossings, you can increase this parameter to
increase the threshold at which Simulink software triggers the Consecutive zero-
crossings violation diagnostic. This may afford your model's behavior more time to
recover.

Simulink software resets the counter each time it detects nonconsecutive zero
crossings; therefore, decreasing the relative tolerance value may also afford your
model's behavior more time to recover.

Dependencies

This parameter is enabled only if Zero-crossing control is set to either Use local
settings or Enable all.

Command-Line Information
Parameter: MaxConsecutiveZCs
Type: string

Value: any valid value

Default: “1000*"

Recommended Settings

Application Setting

Debugging No impact

1-55

1 Configuration Parameters Dialog Box

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Zero-Crossing Detection”
+ “Zero-crossing control” on page 1-51

“Consecutive zero-crossings violation” on page 1-219

+ “Time tolerance” on page 1-53

1-56

Solver Pane

Algorithm

Specifies the algorithm to detect zero crossings when a variable-step solver is used.
Settings
Default: Nonadaptive

Adaptive

Use an improved zero-crossing algorithm which dynamically activates and
deactivates zero-crossing bracketing. With this algorithm you can set a zero-crossing
tolerance. See “Signal threshold” on page 1-59 to learn how to set the zero-

crossing tolerance.

Nonadaptive

Use the nonadaptive zero-crossing algorithm present in the Simulink software prior
to Version 7.0 (R2008a). This option detects zero-crossings accurately, but might
cause longer simulation run times for systems with strong “chattering” or Zeno
behavior.

Tips

* The adaptive zero-crossing algorithm is especially useful in systems having strong
“chattering”, or Zeno behavior. In such systems, this algorithm yields shorter
simulation run times compared to the nonadaptive algorithm. See “Zero-Crossing
Detection” for more information.

Dependencies

* This parameter is enabled only if the solver Type is set to Variable-step.
* Selecting Adaptive enables the Signal threshold parameter.
Command-Line Information

Parameter: ZeroCrossAlgorithm

Type: string

Value: "Nonadaptive® | "Adaptive”

Default: "Nonadaptive*

Recommended Settings

Application Setting
Debugging No impact

1-57

1 Configuration Parameters Dialog Box

1-58

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Zero-Crossing Detection”

“Zero-crossing control” on page 1-51

“Consecutive zero-crossings violation” on page 1-219
“Time tolerance” on page 1-53

“Number of consecutive zero crossings” on page 1-55

Solver Pane

Signal threshold

Specifies the deadband region used during the detection of zero crossings. Signals falling
within this region are defined as having crossed through zero.

The signal threshold is a real number, greater than or equal to zero.
Settings
Default: Auto

Auto
The signal threshold is determined automatically by the adaptive algorithm.
String
Use the specified value for the signal threshold. The value must be a real number
equal to or greater than zero.
Tips
+ Entering too small of a value for the Signal Threshold parameter will result in long
simulation run times.

* Entering a large Signal Threshold value may improve the simulation speed
(especially in systems having extensive chattering). However, making the value too
large may reduce the simulation accuracy.

Dependency
This parameter is enabled if the zero-crossing Algorithm is set to Adaptive.

Command-Line Information

Parameter: ZCThreshold

Type: string

Value: "auto”™ | any real number greater than or equal to zero
Default: "auto”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-59

1 Configuration Parameters Dialog Box

1-60

Application Setting
Efficiency No impact
Safety precaution No impact
See Also

+ “Zero-Crossing Detection”

+ “Zero-crossing control” on page 1-51

+ “Consecutive zero-crossings violation” on page 1-219
* “Time tolerance” on page 1-53

+ “Number of consecutive zero crossings” on page 1-55

Solver Pane

Periodic sample time constraint

Select constraints on the sample times defined by this model. If the model does not
satisfy the specified constraints during simulation, Simulink software displays an error
message.

Settings
Default: Unconstrained

Unconstrained

Specifies no constraints. Selecting this option causes Simulink software to display a
field for entering the solver step size.

Use the Fixed-step size (fundamental sample time) option to specify solver step
size.

Ensure sample time independent

Specifies that Model blocks inherit sample time from the context in which they

are used. You cannot use a referenced model that has intrinsic sample times in a
triggered subsystem or iterator subsystem. If you plan on referencing this model

in a triggered or iterator subsystem, you should select Ensure sample time
independent so that Simulink can detect sample time problems while unit testing
this model.

* “Inherit Sample Times”
+ “Inherited Sample Time for Referenced Models”
* “Function-Call Models”

Simulink software checks to ensure that this model can inherit its sample times from
a model that references it without altering its behavior. Models that specify a step
size (i.e., a base sample time) cannot satisfy this constraint. For this reason, selecting
this option causes Simulink software to hide the group's step size field (see “Fixed-
step size (fundamental sample time)” on page 1-64).

Specified

Specifies that Simulink software check to ensure that this model operates at a
specified set of prioritized periodic sample times. Use the Sample time properties
option to specify and assign priorities to model sample times.

“Execute Multitasking Models” explains how to use this option for multitasking
models.

1-61

1 Configuration Parameters Dialog Box

Tips

During simulation, Simulink software checks to ensure that the model satisfies the
constraints. If the model does not satisfy the specified constraint, then Simulink software
displays an error message.

Dependencies
This parameter is enabled only if the solver Type is set to Fixed-step.
Selecting Unconstrained enables the following parameters:

* Fixed-step size (fundamental sample time)
+ Tasking mode for periodic sample times
+ Higher priority value indicates higher task priority

+ Automatically handle rate transitions for data transfers
Selecting Specified enables the following parameters:

+ Sample time properties

+ Tasking mode for periodic sample times

* Higher priority value indicates higher task priority

+ Automatically handle rate transitions for data transfers
Command-Line Information

Parameter: SampleTimeConstraint

Type: string

Value: "unconstrained” | "STIndependent® | "Specified”
Default: "unconstrained”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Specified or Ensure sample time
independent

1-62

Solver Pane

See Also

* “Inherit Sample Times”
* “Inherited Sample Time for Referenced Models”
+ “Function-Call Models”

+ “Fixed-step size (fundamental sample time)” on page 1-64
+ “Execute Multitasking Models”

1-63

1 Configuration Parameters Dialog Box

Fixed-step size (fundamental sample time)

Specify the step size used by the selected fixed-step solver.

Settings

Default: auto

Entering auto (the default) in this field causes Simulink to choose the step size.

If the model specifies one or more periodic sample times, Simulink chooses a step size
equal to the greatest common divisor of the specified sample times. This step size,
known as the fundamental sample time of the model, ensures that the solver will take
a step at every sample time defined by the model.

If the model does not define any periodic sample times, Simulink chooses a step size
that divides the total simulation time into 50 equal steps.

If the model specifies no periodic rates and the stop time is Inf, Simulink uses 0.2 as
the step size. Otherwise, it sets the fixed-step size to

h _ tstop ~Lstart

max 5 O

For Sine and Signal Generator source blocks, if the stop time is Inf, Simulink
calculates the step size using this heuristic:

h,, = min((0.2), (% j[szmax D

Otherwise, the step size is:

h — min tstop_tstart 1 1
e 50 '\ 3)| Freq,,,

where Freq,,., is the maximum frequency (Hz) of these blocks in the model.

Dependencies

This parameter is enabled only if the Periodic sample time constraint is set to
Unconstrained.

1-64

Solver Pane

Command-Line Information
Parameter: FixedStep
Type: string

Value: any valid value
Default: "auto”

Recommended Settings
Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* “Modeling Dynamic Systems”

Setting

No impact
No impact
No impact

No impact

1-65

1 Configuration Parameters Dialog Box

1-66

Sample time properties

Specify and assign priorities to the sample times that this model implements.
Settings

No Default

+ Enter an Nx3 matrix with rows that specify the model's discrete sample time
properties in order from fastest rate to slowest rate.

+ Faster sample times must have higher priorities.
Format

[period, offset, priority]

period The time interval (sample rate) at which updates occur during the
simulation.
offset A time interval indicating an update delay. The block is updated

later in the sample interval than other blocks operating at the same
sample rate.

priority Execution priority of the real-time task associated with the sample
rate.

See “ Specify Sample Time” for more details and options for specifying sample time.

Example
[[0.1, 0, 10]; [0.2, O, 11]; [0.3, O, 12]]

* Declares that the model should specify three sample times.

* Sets the fundamental sample time period to 0.1 second.

+ Assigns priorities of 10, 11, and 12 to the sample times.

+ Assumes higher priority values indicate lower priorities — the Higher priority
value indicates higher task priority option is not selected.

Tips

+ If the model's fundamental rate differs from the fastest rate specified by the model,
specify the fundamental rate as the first entry in the matrix followed by the specified
rates, in order from fastest to slowest. See “Purely Discrete Systems”.

Solver Pane

+ If the model operates at one rate, enter the rate as a three-element vector in this field
— for example, [0.1, 0, 10].

* When you update a model, Simulink software displays an error message if what you
specify does not match the sample times defined by the model.

+ If Periodic sample time constraint is set to Unconstrained, Simulink software
assigns priority 40 to the model base sample rate. If Higher priority value
indicates higher task priority is selected, Simulink software assigns priorities 39,
38, 37, and so on, to subrates of the base rate. Otherwise, it assigns priorities 41, 42,
43, and so on, to the subrates.

+ Continuous rate is assigned a higher priority than is the discrete base rate regardless
of whether Periodic sample time constraint is Specified or Unconstrained.

Dependencies

This parameter is enabled by selecting Specified from the Periodic sample time
constraint list.

Command-Line Information
Parameter: SampleTimeProperty
Type: structure

Value: any valid matrix

Default: []

Note: If you specify SampleTimeProperty at the command line, you must enter the
sample time properties as a structure with the following fields:

+ SampleTime

+ Offset
* Priority

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

1-67

1 Configuration Parameters Dialog Box

Application Setting

Safety precaution Period, offset, and priority of each sample time in
the model; faster sample times must have higher
priority than slower sample times

See Also

+ “Purely Discrete Systems”

+ “Specify Sample Time”

1-68

Solver Pane

Extrapolation order

Select the extrapolation order used by the odel4x solver to compute a model's states at

the next time step from the states at the current time step.

Settings
Default: 4
1

Specifies first order extrapolation.
2

Specifies second order extrapolation.
3

Specifies third order extrapolation.
4

Specifies fourth order extrapolation.
Tip

Selecting a higher order produces a more accurate solution, but is more computationally

intensive per step size.

Dependencies

This parameter is enabled by selecting odel4x (extrapolation) from the Solver list.

Command-Line Information
Parameter: ExtrapolationOrder
Type: integer

Value: 112|314

Default: 4

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-69

1 Configuration Parameters Dialog Box

Efficiency No impact
Safety precaution No impact
See Also

* “Choose a Fixed-Step Solver”

1-70

Solver Pane

Number Newton's iterations

Specify the number of Newton's method iterations used by the odel4x solver to compute
a model's states at the next time step from the states at the current time step.

Settings
Default: 1
Minimum: 1

Maximum: 2147483647

More iterations produce a more accurate solution, but are more computationally
intensive per step size.

Dependencies
This parameter is enabled by selecting odel4x (extrapolation) from the Solver list.

Command-Line Information

Parameter: NumberNewtonlterations
Type: integer

Value: any valid number

Default: 1

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* “Choose a Fixed-Step Solver”

* “Purely Discrete Systems”

1-71

1 Configuration Parameters Dialog Box

1-72

Allow tasks to execute concurrently on target
Enable concurrent tasking behavior for model.

Settings

Default: On

¥ On
Enable the model to be configured for concurrent tasking.

I off
Disable the model from being configured for concurrent tasking.

Tip

+ If the referenced mode has a single rate, you do not need to select this check box to
enable concurrent tasking behavior.

* To remove this parameter, in the Model Explorer right-click and select

Configuration > Hide Concurrent Execution options.

Dependencies

This parameter check box is visible only if you convert an existing configuration set to
one for concurrent execution. To enable this parameter, in the Model Explorer hierarchy
pane, right-click and select Configuration > Show Concurrent Execution options.
The Dialog pane is displayed with the Allow tasks to execute concurrently on
target check box and a Configure Tasks button.

+ If this parameter check box is selected when you click the Configure Tasks button,
the Concurrent Execution dialog box is displayed.

+ If this parameter check box is cleared, the following parameters are enabled:

* Periodic sample time constraint

+ Tasking mode for periodic sample times

+ Automatically handle rate transition for data transfer
* Higher priority value indicates higher task priority

* To make this parameter check box and button visible with the command-line
information, set the EnableConcurrentExecution to "on". By default, this
parameter is set to "ofF".

Solver Pane

Command-Line Information

Parameter: ConcurrentTasks
Type: string

Value: "on”" | "off"

Default: "on*

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact
0.0

“Concurrent Execution Window: Main Pane” on page 6-2

1-73

1 Configuration Parameters Dialog Box

Data Import/Export Pane

1} Configuration Parameters: vdp/Configuration (Active)

Category

Select:

Solver
Data Import/Export
> Optimization
> Diagnostics
Hardware Implementation
Maodel Referencing
> Simulation Target
> Code Generation

[e s

Load from warkspace
[7] Input: [l
[T mitial state: |[]

Connect Input

Save to workspace

Time, State, Output

[[] Time: tout Format: Array -
[0 states: xout [7] Limit data points to last: | 1000

[7] output: yout Decimation: 1

[7] Final states: xFinal Save complete SimState in final state

Signals

Signal logging format:

Signal logging: logsout

n

[Configure Signals to Log...

Data Store Memory

Data stores: dsmout

Simulation Data Inspector
[7] Record logged workspace data in Simulation Data Inspector
Enable live streaming of selected signals to Simulation Data Inspector

[”] write streamed signals to workspace | streamout

Save options

Output optiens: |Refine output - | Refine factor: 1

[C] save simulation output as single object out Logging intervals: | [-inf, inf]

oK H Cancel I[Help Apply

In this section...

1-74

“Data Import/Export Overview” on page 1-76
“Input” on page 1-77

“Initial state” on page 1-79

“Time” on page 1-81

“States” on page 1-83

Data Import/Export Pane

In this section...

“Output” on page 1-85

“Final states” on page 1-87

“Format” on page 1-89

“Limit data points to last” on page 1-92

“Decimation” on page 1-94

“Save complete SimState in final state” on page 1-96
“Signal logging” on page 1-98

“Signal logging format” on page 1-101

“Data stores” on page 1-104

“Output options” on page 1-106

“Refine factor” on page 1-108

“Output times” on page 1-110

“Save simulation output as single object” on page 1-111
“Logging intervals” on page 1-113

“Record logged workspace data in Simulation Data Inspector” on page 1-116

“Enable live streaming of selected signals to Simulation Data Inspector” on page
1-118

“Write streamed signals to workspace” on page 1-119

1-75

1 Configuration Parameters Dialog Box

1-76

Data Import/Export Overview

The Data Import/Export pane allows you to import input signal and initial state data

from a workspace and export output signal and state data to the MATLAB® workspace
during simulation. This capability allows you to use standard or custom MATLAB
functions to generate a simulated system's input signals and to graph, analyze, or
otherwise postprocess the system's outputs.

Configuration

1 Specify the data to load from a workspace before simulation begins.

2 Specify the data to save to the MATLAB workspace after simulation completes.
Tips
* To open the Data Import/Export pane, in the Simulink Editor, select Simulation >

Model Configuration Parameters > Data Import/Export.

+ For more information importing and exporting data, see “Load Signal Data for
Simulation” and “Save Runtime Data from Simulation”.

* See the documentation of the sim command for some capabilities that are available
only for programmatic simulation.

See Also

* Importing Data from a Workspace

+ “Export Simulation Data”

+ “Export Signal Data Using Signal Logging”
* Data Import/Export Pane

Data Import/Export Pane

Input

Loads input data from a workspace before the simulation begins.
Settings

Default: Off, [t,u]

|7On

Loads data from a workspace.

Specify a MATLAB expression for the data to be imported from a workspace. The
Simulink software resolves symbols used in this specification as described in “Symbol
Resolution”.

See “Import Data to Root-Level Input Ports” for information on how to use this field.

I off

Does not load data from a workspace.
Tips

* You must select the Input check box before entering input data.

+ Simulink software linearly interpolates or extrapolates input values as necessary if
the Interpolate data option is selected for the corresponding Inport.

* The use of the Input box is independent of the setting of the Format list on the Data
Import/Export pane.

Command-Line Information
Parameter: LoadExternal Input
Type: string

Value: "on" | "off"

Default: "off*

Parameter: External Input
Type: string

Value: any valid value

Default: "[t,u]"

1-77

1 Configuration Parameters Dialog Box

1-78

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No impact for simulation or during development
Off for production code generation

* “Import Data to Root-Level Input Ports”

* Data Import/Export Pane

Data Import/Export Pane

Initial state

Loads the model's initial states from a workspace before simulation begins.

Settings

Default: Off, xInitial

|7On

Simulink software loads initial states from a workspace.

Specify the name of a variable that contains the initial state values, for example, a
variable containing states saved from a previous simulation.

Use the structure or structure-with-time option to specify initial states if you want to
accomplish any of the following:

+ Associate initial state values directly with the full path name to the states. This
eliminates errors that could occur if Simulink software reorders the states, but
the initial state array is not correspondingly reordered.

+ Assign a different data type to each state's initial value.
+ Initialize only a subset of the states.

+ Initialize the states of a top model and the models that it references

See “Load State Information” for more information.

™ off

Simulink software does not load initial states from a workspace.

Tips

The initial values that the workspace variable specifies override the initial values
that the model specifies (the values that the initial condition parameters of those
blocks in the model that have states specify).

Selecting the Initial state check box does not result in Simulink initializing discrete
states in referenced models.

If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

1-79

1 Configuration Parameters Dialog Box

Command-Line Information
Parameter: LoadInitialState
Type: string

Value: "on”" | "off"

Default: "off"

Parameter: InitialState
Type: variable (string) or vector
Value: any valid value

Default: "xInitial”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation
See Also

* Importing Data from a Workspace

+ “State Information”

* Data Import/Export Pane

+ “Data Set Conversion for Logged Data”

1-80

Data Import/Export Pane

Time

Saves simulation time data to the specified variable during simulation.
Settings

Default: On, tout

|7On

Simulink software exports time data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store time data. See “Export
Simulation Data” for more information.

I off

Simulink software does not export time data to the MATLAB workspace during
simulation.

Tips

* You must select the Time check box before entering the time variable.

+ Simulink software saves the output to the MATLAB workspace at the base sample
rate of the model. Use a To Workspace block if you want to save output at a different
sample rate.

+ The Time, State, Output area includes parameters for specifying a limit on the
number of data points to export and the decimation factor.

+ To specify an interval for logging, use the Logging intervals parameter.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveTime
Type: string

Value: "on" | "off"
Default: "on*

Parameter: TimeSaveName
Type: string

Value: any valid value

1-81

1 Configuration Parameters Dialog Box

Default: "tout"”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation
See Also

+ “Export Simulation Data”

* Data Import/Export Pane

1-82

Data Import/Export Pane

States

Saves state data to the specified MATLAB variable during a simulation.
Settings
Default: Off, xout

|7On

Simulink software exports state data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store state data. See Importing
and Exporting States for more information.
ot

Simulink does not export state data during simulation.

Tips

* Simulink saves the states in a MATLAB workspace variable having the specified
name.

+ The saved data has the format that you specify with the Format parameter.

+ If you select the States check box, Simulink logs fixed-point states only if you set the
Format parameter to Dataset.
+ Simulink creates empty variables for state logging (xout) if both of these conditions
apply:
You enable States.
* A model has no states.
* To specify an interval for logging, use the Logging intervals parameter.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveState
Type: string

Value: "on*" | "off"
Default: "off"

1-83

1 Configuration Parameters Dialog Box

1-84

Parameter: StateSaveName
Type: string

Value: any valid value
Default: "xout”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

+ “State Information”

Setting

No impact
No impact
No impact

No impact for simulation or during development
Off for production code generation

* “Techniques for Importing Signal Data”

* Data Import/Export Pane

Data Import/Export Pane

Output

Saves signal data to the specified MATLAB variable during simulation.
Settings

Default: On, yout

|7On

Simulink software exports signal data to the MATLAB workspace during simulation.

Specify the name of the MATLAB variable used to store signal data. See “Export
Simulation Data” for more information.

I off

Simulink software does not export signal data during simulation.
Tips
* You must select the Output check box before entering the output variable.

+ Simulink software saves the output to the MATLAB workspace at the base sample
rate of the model, if you set the Format parameter to a value other than Dataset.
For Dataset format, logging the set the rate for each Outport block.

* The Time, State, Output area includes parameters for specifying the format and
other characteristics of the saved data (for example, the format for the saved data and
the decimation factor).

+ To specify an interval for logging, use the Logging intervals parameter.

* To log fixed-point data, set the Format parameter to Dataset. If you set the Format
parameter to a value other than Dataset, Simulink logs fixed-point data as double.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information
Parameter: SaveOutput
Type: string

Value: "on® | "off"

Default: "on*

Parameter: OutputSaveName

1-85

1 Configuration Parameters Dialog Box

1-86

Type: string
Value: any valid value
Default: "yout”

Recommended Settings
Application
Debugging
Traceability

Efficiency

Safety precaution

See Also

+ “Export Simulation Data”

* Data Import/Export Pane

Setting

No impact
No impact
No impact

No impact for simulation or during development
Off for production code generation

+ “Data Set Conversion for Logged Data”

Data Import/Export Pane

Final states

Saves the logged states of the model at the end of a simulation to the specified MATLAB
variable.

Settings

Default: Off, xFinal

|7On

Simulink software exports final logged state data to the MATLAB workspace during
simulation.

Specify the name of the MATLAB variable in which to store the values of these final
states. See Importing and Exporting States for more information.

I off

Simulink software does not export the final state data during simulation.

Tips

You must select the Final states check box before entering the final states variable.

Simulink software saves the final states in a MATLAB workspace variable having the
specified name.

The saved data has the format that you specify with the Format parameter.
Simulink creates empty variables for final state logging (xfinal) if both of these
conditions apply:

* You enable Final states.

* A model has no states.

Using the Final states is not always sufficient for complete and accurate restoration
of a simulation state. The SimState object contains the set of all variables that are
related to the simulation of a model. For details, see “Save complete SimState in final
state” on page 1-96 and “Save and Restore Simulation State as SimState”.

See “State Information” for more information.

If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

1-87

1 Configuration Parameters Dialog Box

1-88

Command-Line Information
Parameter: SaveFinalState
Type: string

Value: "on”" | "off"

Default: "off"

Parameter: FinalStateName
Type: string

Value: any valid value
Default: "xFinal "

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* Importing and Exporting States

* Data Import/Export Pane

Setting

No impact
No impact
No impact

No impact for simulation or during development
Off for production code generation

+ “Data Set Conversion for Logged Data”

Data Import/Export Pane

Format

Select the data format for saving states, output, and final states data.
Settings

Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the logged
data as MATLAB timeseries objects.

Array
The format of the data is a matrix. Each row corresponds to a simulation time step.
Structure

For logging output, the format of the data is a structure that contains substructures
for each port. Each port substructure contains signal data for the corresponding port.
For logging states, the structure contains a substructure for each block that has a
state.

Structure with time

The format of the data is a structure that has two fields: a time field and a signals
field. The time field contains a vector of simulation times. The signals field contains
the same data as the Structure format.

Tips
+ The Dataset format for logged state and root outport data:
+ Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB

timeseries objects allow you to work with logged data in MATLAB without a
Simulink license.

* Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow” signal logging.

+ Does not support logging nonvirtual bus data for code generation or rapid
accelerator mode.

* You can use array format to save your model's outputs and states only if the outputs:

+ Are all scalars or all vectors (or all matrices for states)

1-89

1 Configuration Parameters Dialog Box

+ Are all real or all complex

+ Have the same data type

Use the Dataset, Structure, or Structure with time output formats (see
Structure with time) if your model's outputs and states do not meet these conditions.

+ If you enable the Save complete SimState in final state parameter, then the
format does not apply to final states data.

* Simulink can read back simulation data saved to the workspace in the Structure
with time output format. See “Import Data to Root-Level Input Ports” for more
information.

* To specify the format for signal logging data, use the Signal logging format
parameter.

+ If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to postprocess with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Command-Line Information

Parameter: SaveFormat

Type: string

Value: "Array” | "Structure® | "StructureWithTime" | "Dataset”
Default: "Dataset”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation

See Also

+ “Export Simulation Data”

+ “Time, State, and Output Data Format”
* Data Import/Export Pane

+ “Data Set Conversion for Logged Data”

1-90

Data Import/Export Pane

1-91

1 Configuration Parameters Dialog Box

1-92

Limit data points to last

Limit the number of data points to export to the MATLAB workspace.
Settings
Default: On, 1000

|7On

Limits the number of data points exported to the MATLAB workspace to the number
that you specify.

Specify the maximum number of data points to export to the MATLAB workspace.
At the end of the simulation, the MATLAB workspace contains the last N points
generated by the simulation.

I off

Does not limit the number of data points.
Tips

+ Saving data to the MATLAB workspace can consume memory. Use this parameter to
limit the number of samples saved to help avoid this problem.

* You can also apply a Decimation factor to skip a selected number of samples.

Command-Line Information
Parameter: LimitDataPoints
Type: string

Value: "on*" | "off"

Default: "on*

Parameter: MaxDataPoints
Type: string

Value: any valid value

Default: *1000*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Data Import/Export Pane

Application Setting
Efficiency No impact
Safety precaution No impact for simulation or during development

Off for production code generation

See Also

+ “Export Simulation Data”

* Data Import/Export Pane

1-93

1 Configuration Parameters Dialog Box

1-94

Decimation

Specify that Simulink software output only every N points, where N is the specified
decimation factor.

Settings
Default: 1

* The default value (1) specifies that all data points are saved.
* The value must be a positive integer greater than zero.

+ Simulink software outputs data only at the specified number of data points. For
example, specifying 2 saves every other data point, while specifying 10 saves just one
in ten data points.

+ At the end of the simulation, the total number of data points is reduced by the factor
specified.

Tips

+ Saving data to the MATLAB workspace can consume memory. Use this parameter to
limit the number of samples saved to help avoid this problem.

* You can also use the Limit data points to last parameter to help resolve this
problem.

Command-Line Information
Parameter: Decimation
Type: string

Value: any valid value
Default: "1*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation

Data Import/Export Pane

See Also

+ “Export Simulation Data”

* Data Import/Export Pane

1-95

1 Configuration Parameters Dialog Box

Save complete SimState in final state

At the end of a simulation, Simulink saves the complete set of states of the model,
including logged states, to the specified MATLAB variable.

Settings
Default: Off, xFinal

|7On

Simulink software exports the complete set of final state data (i.e., the SimState) to
the MATLAB workspace during simulation.

Specify the name of the MATLAB variable in which to store the values of the final
states. See Importing and Exporting States for more information.

I off

Simulink software exports the final logged states during simulation.
Tips

* You must select the Final states check box to enable the Save complete SimState
in final state option.

* Simulink saves the final states in a MATLAB workspace variable having the specified
name.

Dependencies
This parameter is enabled by Final states.

Command-Line Information

Parameter: SaveCompleteFinalSimState
Type: string

Value: "on”" | "off"

Default: "off"

Parameter: FinalStateName

Type: string

Value: any valid value

Default: "xFinal*

1-96

Data Import/Export Pane

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* Importing and Exporting States
* Data Import/Export Pane

+ “Limitations of SimState”

Setting

No impact
No impact
No impact

No impact

1-97

1 Configuration Parameters Dialog Box

1-98

Signal logging

Globally enable or disable signal logging for this model.

Settings

Default: On, logsout

|7On

Enables signal logging to the MATLAB workspace during simulation.

Specify the name of the signal logging object used to record logged signal data in
the MATLAB workspace. For more information, see “Specify a Name for the Signal
Logging Data for a Model”.

I off

Disables signal logging to the MATLAB workspace during simulation.

Tips

You must select the Signal logging check box before entering the signal logging
variable.

Simulink saves the signal data in a MATLAB workspace variable having the specified
name.

The saved data has the format that you specify with the Signal logging format
parameter.

Simulink does not support signal logging for the following types of signals:

* Output of a Function-Call Generator block

+ Signal connected to the input of a Merge block

+ Outputs of Trigger and Enable blocks

If you select Signal logging, you can use the Configure Signals to Log button to
open the Signal Logging Selector. You can use the Signal Logging Selector to:

* Review all signals in a model hierarchy that are configured for logging

+ Override signal logging settings for specific signals

Control signal logging throughout a model reference hierarchy in a streamlined
way

Data Import/Export Pane

You can use the Signal Logging Selector with Simulink and Stateflow signals.

For details about the Signal Logging Selector, see “Use Signal Logging Selector to
View Signal Logging Configuration” and “Override Signal Logging Settings”.

Dependencies
This parameter enables:

+ Signal logging format
+ The Configure Signals to Log button

Command-Line Information
Parameter: SignallLogging
Type: string

Value: "on” | "off"

Default: "on*

Parameter: SignalLoggingName
Type: string

Value: any valid value

Default: " logsout”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Efficiency No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation
See Also

+ “Export Signal Data Using Signal Logging”
* Data Import/Export Pane
+ “Data Set Conversion for Logged Data”

1-99

1 Configuration Parameters Dialog Box

1-100

Data Import/Export Pane

Signal logging format

Specify format for signal logging data for this model.

Settings

Default: Dataset

Dataset

Simulink uses a Simulink.SimulationData.Dataset object to store the logged
signal data as MATLAB timeseries objects.

ModelDatalogs

Simulink uses a Simul ink.Mode IDatalogs object to store the logged signal data,
using Simulink.Timeseries and Simulink.TsArray objects.

This setting is supported for backward compatibility. Prior to R2012b, the default
signal logging format was Mode lDatalLogs. The Mode IDatalLogs format will be
removed in a future release. For an existing model that uses the Mode IDatalLogs
format, you should migrate the model to use Dataset format. For details, see
“Migrate from ModelDataLogs to Dataset Format”.

Tips

You must select Signal logging before specifying the signal logging format.
The Dataset format:

+ Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logged data in MATLAB without a
Simulink license.

Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow signal logging

+ Provides an easy to analyze format for logged signal data for models with deep
hierarchies, bus signals, and signals with duplicate or non-standard names.

+ Avoids the limitations of the Mode IDatalLogs format. For example, for a virtual
bus, logging only logs one of multiple signals that share the same source block. See
Bug Report 495436 for a description of the Mode IDatalogs limitations.

Simulink checks signal logging data format consistency for certain model
referencing configurations. For details, see “Model Reference Signal Logging Format

1-101

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=

1 Configuration Parameters Dialog Box

1-102

Consistency”. You can use the Upgrade Advisor (with the upgradeadvisor function)
to upgrade a model to use Dataset format.

An alternative approach for handling reported inconsistencies is to use the
Simulink.SimulationData.updateDatasetFormatLogging function to update
the models to use Dataset format. This approach sets the Model Configuration
Parameters > Data Import/Export > Signal logging format parameter to
Dataset for each referenced model and each variant.

If you have logged signal data in the Mode IDatalogs format, you can use
the Simulink.ModelDatalogs.convertToDataset function to convert the
ModelDatalogs data to Dataset format.

Dataset format is required to log array of buses data.

If you use a format other than Dataset, you can convert the logged data to Dataset
format. Converting the data to Dataset makes it easier to post-process with other
logged data. For more information, see “Data Set Conversion for Logged Data”.

Simulink uses the Simulink.SimulationData.Dataset data format for logging data
stores.

For additional information about specifying the signal logging format, see “Specify the
Signal Logging Data Format”.

Command-Line Information

Parameter: SignalLoggingSaveFormat
Type: string

Value: "Dataset” | "ModelDatalogs”
Default: "Dataset”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation

See Also

“Export Signal Data Using Signal Logging”

Data Import/Export Pane

“Specify the Signal Logging Data Format”
Data Import/Export Pane
Simulink._ModelDatalLogs

Simulink.SimulationData.Dataset

1-103

1 Configuration Parameters Dialog Box

Data stores

Globally enable or disable logging of Data Store Memory block variables for this model.
Settings

Default: On, dsmsout

¥ On
Enables data store logging to the MATLAB workspace during simulation.
Specify the name of the data store logging object to use for recording logged data
store data. The data store logging object must be in the MATLAB workspace.

I off
Disables data store logging to the MATLAB workspace during simulation.

Tips

* Simulink saves the data in a MATLAB workspace variable having the specified name.

* The saved data has the Simulink.SimulationData.Dataset format.

* See “Supported Data Types, Dimensions, and Complexity for Logging Data
Stores”“Data Store Logging Limitations” and “Data Store Logging Limitations”.

Dependencies

Select the Data stores check box before entering the data store logging variable.

Command-Line Information
Parameter: DSMLogging
Type: string

Value: "on" | "off"

Default: "on*

Parameter: DSMLoggingName
Type: string

Value: any valid value
Default: "dsmOut”

Recommended Settings

Application Setting
Debugging No impact

1-104

Data Import/Export Pane

Application Setting

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation

See Also

+ “Log Data Stores”

+ “Export Signal Data Using Signal Logging”

* Data Import/Export Pane

+ Simulink.SimulationData.DataStoreMemory
+ Data Store Memory

1-105

1 Configuration Parameters Dialog Box

1-106

Output options

Select options for generating additional output signal data for variable-step solvers.
Settings

Default: Refine output

Refine output

Generates data output between, as well as at, simulation times steps. Use Refine
factor to specify the number of points to generate between simulation time steps.
For more information, see “Refine Output”.

Produce additional output

Generates additional output at specified times. Use Output times to specify the
simulation times at which Simulink software generates additional output.

Produce specified output only

Use Output times to specify the simulation times at which Simulink generates
output, in addition to the simulation start and stop times.

Tips

+ These settings can force the solver to calculate output values for times that it would
otherwise have omitted because the calculations were not needed to achieve accurate
simulation results. These extra calculations can cause the solver to locate zero
crossings that it would otherwise have missed.

* For additional information on how Simulink software calculates outputs for these
three options, see “Samples to Export for Variable-Step Solvers”.

Dependencies

This parameter is enabled only if the model specifies a variable-step solver (see Solver
Type).

Selecting Refine output enables the Refine factor parameter.

Selecting Produce additional outputor Produce specified output only
enables the Output times parameter.

Command-Line Information
Parameter: OutputOption

Data Import/Export Pane

Type: string

Value: "RefineQutputTimes® | "AdditionalOutputTimes” |
"SpecifiedOutputTimes”

Default: "RefineOutputTimes*”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation
See Also

* “Output Options”

* Refine factor

* “Refine Output”

+ “Export Simulation Data”

* Data Import/Export Pane

1-107

1 Configuration Parameters Dialog Box

1-108

Refine factor

Specify how many points to generate between time steps to refine the output.
Settings

Default: 1

* The default refine factor is 1, meaning that no extra data points are generated.

+ A refine factor of 2 provides output midway between the time steps, as well as at the
steps.

Tip

Simulink software ignores this option for discrete models. This is because the value of

data between time steps is undefined for discrete models.

Dependency

This parameter is enabled only if you select Refine output as the value of Output
options.

Command-Line Information
Parameter: Refine
Type: string

Value: any valid value
Default: "1*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation

See Also

+ “Refine Output”

Data Import/Export Pane

* Data Import/Export Pane

1-109

1 Configuration Parameters Dialog Box

1-110

Output times

Specify times at which Simulink software should generate output in addition to, or
instead of, the times of the simulation steps taken by the solver used to simulate the
model.

Settings

Default: []

Enter a matrix containing the times at which Simulink software should generate
output in addition to, or instead of, the simulation steps taken by the solver.

If the value of Output options is Produce additional output, for the default
value [], Simulink generates no additional data points.

If the value of Output options is Produce specified output only, for the
default value [] Simulink generates no data points.

Tips

The Produce additional output option generates output at the specified times,
as well as at the regular simulation steps.

The Produce specified output only option generates output at the specified
times.

Discrete models define outputs only at major time steps. Therefore, Simulink software
logs output for discrete models only at major time steps. If the Output times field
specifies other times, Simulink displays a warning at the MATLAB command line.

For additional information on how Simulink software calculates outputs for the
Output options Produce specified output only and Produce additional
output options, see “Samples to Export for Variable-Step Solvers”.

Dependency

This parameter is enabled only if the value of Output options is Produce additional
output or Produce specified output only.

Command-Line Information
Parameter: OutputTimes
Type: string

Value: any valid value
Default: "[]*

Data Import/Export Pane

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

+ “Refine Output”

* Data Import/Export Pane

Setting

No impact
No impact
No impact

No impact for simulation or during development
Off for production code generation

Save simulation output as single object

Enable the single-output format of the sim command.

Settings

Default: off

When you enable this option:

+ Simulink returns all simulation outputs within a single
Simulink_SimulationOutput object, providing that you simulate by choosing
Simulation > Start from the model window.

* You must specify the variable name of the single output object which will contain the
simulation outputs. Use the text field next to the check box to specify this name.

* The sim command becomes compatible with the parfor command, in terms of

transparency issues.

+ The setting overrides the Dataset selection for Signal logging format in the Data

Import/Export pane.

Tips

as single object.

To use the Logging intervals parameter, you must select Save simulation output

1-111

1 Configuration Parameters Dialog Box

+ If you select this option and you simulate by entering the sim command at the
command line of the MATLAB command window, then the output variables will not
be stored in the object "out”. Instead, they will be stored in their respective variable
names. This design is necessary to avoid workspace issues when sim is called from
within a parfor loop.

* The method who of the Simul ink.SimulationOutput object returns the list of
variables that the object contains.

* Use the get method of the Simul ink.SimulationOutput object to access the
variables that the object contains.

Command-Line Information

Parameter: ReturnWorkspaceOutputs
Type: string

Value: "on™ | "off" |

Default: "off"

Parameter: ReturnWorkspaceOutputsName
Type: string

Value: Any valid value

Default: "Out”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Data Import/Export Pane” on page 1-74
* “Run Simulation Using the sim Command”

+ “Run Parallel Simulations”

1-112

Data Import/Export Pane

Logging intervals

Set intervals for logging

Settings

Default:[-inT, inf]

Use a real double matrix with two columns.

The matrix elements cannot be NaN.

You can specify as many intervals as you want.

Each row defines the start and end times for an interval.

Intervals must be disjoint and ordered. For example, you can specify these three
intervals: [1,5;6,10;11,15]

Tips

The logging intervals apply to data logged for:

* Time
States
Output

+ Signal logging

+ The To Workspace block
The To File block

The logging intervals do not apply to final state logged data, scopes or streaming data
to the Simulation Data Inspector.

PIL simulation mode does not support logging intervals. Simulink ignores specified
logging intervals, without displaying a warning.

SIL simulation mode supports logging intervals for data logged to a
Simulink.SimulationOutput object. In SIL mode, Simulink ignores specified
logging intervals, without displaying a warning, for:

+ Data logged to a To File block

+ MAT-file logging (enabled with the Configuration Parameters > Code
Generation > Interface > MAT-file logging parameter)

The interval times that meet either of these two conditions do not return logged data:

1-113

1 Configuration Parameters Dialog Box

1-114

* The time is before the simulation start time.

+ The time is after the simulation stop time.

Interval times that meet these conditions do not cause a warning.

+ All logged data, except for data logged to a To File block, is stored in the object you
specify for the Save simulation output as single object parameter. Data for the To
File block reflects the specified intervals, but is stored in the file associated with the
block.

* To prevent logging of To Workspace blocks, set Logging intervals to an empty
matrix ([1).

+ If you set Decimation to 2, then the logged data is for alternating times in the
intervals. In other words, data is for times 2, 4, and 8.

+ If you set Limit data points to last to 4, then the logged data is for the last four
times in the intervals. In other words, data is for times 4, 7, 8, and 9.

+ Simulation Stepper rollback reflects logging intervals. If you change the logging
intervals of a simulation before rollback, logging:
* Includes data starting with the first step after the rollback

* Does not include data for time steps that are outside of the original logging
intervals

Dependency

This parameter is enabled only if you select the Save simulation output as single
object parameter.

Command-Line Information

Parameter: Logginglntervals

Type: real double matrix with two columns
Default: [-inT, inf]

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Data Import/Export Pane

Efficiency No impact
Safety precaution No impact
See Also

“Data Import/Export Pane” on page 1-74

“Run Simulation Using the sim Command”

1-115

1 Configuration Parameters Dialog Box

Record logged workspace data in Simulation Data Inspector

Specify whether to send signals marked for logging T to the Simulation Data Inspector
after simulation pauses or completes.

Settings
Default: Off

|7On

Record logged signals and send signal data to the Simulation Data Inspector

after a simulation pauses or completes. This setting turns on the record state on
the Simulation Data Inspector button on the Simulink Editor toolbar. After a
simulation is recorded, the logged simulation data appears in the Runs pane of the
Simulation Data Inspector.

I off

Do not record logged signals during simulation. This setting turns off the record state
on the Simulation Data Inspector button on the Simulink Editor toolbar.

Tip
To open the Simulation Data Inspector, on the Simulink Editor toolbar, click the

Simulation Data Inspector button arrow and select Simulation Data Inspector.

Command-Line Information
Parameter: InspectSignallLogs
Type: string

Value: "on" | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact for simulation or during development

Off for production code generation

1-116

Data Import/Export Pane

See Also

* “Load Signal Data for Simulation”
* “Record Logged Simulation Data”
+ “Inspect Signal Data”

“Customize the Simulation Data Inspector Interface”

1-117

1 Configuration Parameters Dialog Box

1-118

Enable live streaming of selected signals to Simulation Data Inspector

Specify whether to send signals marked for streaming - to the Simulation Data
Inspector during simulation.

Settings
Default: On

|7On

Send signals marked for streaming to the Simulation Data Inspector during
simulation. This setting turns on the streaming state on the Simulation Data
Inspector button on the Simulink Editor toolbar. During simulation, the simulation
data appears in the Runs pane in the Simulation Data Inspector. To view a
streaming signal during simulation, open the Simulation Data Inspector, and select
the signal check box in the Runs pane.

I off

Do not send signals marked for streaming to the Simulation Data Inspector during
simulation. This setting turns off the live streaming state on the Simulation Data
Inspector button on the Simulink Editor toolbar.

Tip
To open the Simulation Data Inspector, on the Simulink Editor toolbar, click the

Simulation Data Inspector button arrow and select Simulation Data Inspector.

Command-Line Information
Parameter: Visual izeSimOutput
Type: string

Value: "on” | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Data Import/Export Pane

Application Setting

Safety precaution No impact for simulation or during development
Off for production code generation

See Also

+ “Stream Data to the Simulation Data Inspector”
* “Inspect Signal Data”

+ “Customize the Simulation Data Inspector Interface”

Write streamed signals to workspace

Specify whether to write streamed signal data to the base workspace
Settings

Default: Off

|7On

Send signals marked for streaming to the base workspace after simulation. The
dataset is saved in the base workspace as a Simulink.SimulationData.Signal
object as the name specified in the text field. The default name is "streamout”.

I off

Do not send signals marked for streaming to the base workspace after simulation.

Command-Line Information
Parameter: StreamToWorkspace
Type: string

Value: "on" | "off"

Default: "off"

Parameter: StreamVariableName
Type: string

Value: any valid value

Default: "streamout*”

See Also

+ “Stream Data to the Simulation Data Inspector”

1-119

1 Configuration Parameters Dialog Box

Optimization Pane: General
The Optimization > General pane includes the following parameters:

Simulation and code generation
Blodk reduction Conditional input branch execution
Implement logic signals as Boolean data (vs. double) Application lifespan (days) inf

[7] Use integer division to handle net slopes that are redprocals of integers

[7] Use floating-point multiplication to handle net slope corrections

Default for underspedified data type: | double

Code generation
Data initialization
|Jse memset to initialize floats and doubles to 0.0
Integer and fixed-point
[7] Remove code from floating-point to integer conversions that wraps out-of-range values

Remove code from floating-point to integer conversions with saturation that maps NaM to zero

Accelerating simulations

Compiler optimization level: | Optimizations off (faster builds)

[7] verbose accelerator builds

In this section...

“Optimization Pane: General Tab Overview” on page 1-122

“Block reduction” on page 1-123

“Conditional input branch execution” on page 1-126

“Implement logic signals as Boolean data (vs. double)” on page 1-129
“Application lifespan (days)” on page 1-131

“Use division for fixed-point net slope computation” on page 1-134

“Use floating-point multiplication to handle net slope corrections” on page 1-136

“Default for underspecified data type” on page 1-138

“Optimize using the specified minimum and maximum values” on page 1-140

1-120

Optimization Pane: Generall

In this section...

“Remove root level I/O zero initialization” on page 1-143

“Use memset to initialize floats and doubles to 0.0” on page 1-145
“Remove internal data zero initialization” on page 1-147
“Optimize initialization code for model reference” on page 1-149

“Remove code from floating-point to integer conversions that wraps out-of-range values”
on page 1-151

“Remove code from floating-point to integer conversions with saturation that maps NaN
to zero” on page 1-153

“Remove code that protects against division arithmetic exceptions” on page 1-155

“Compiler optimization level” on page 1-157

“Verbose accelerator builds” on page 1-159

1-121

1 Configuration Parameters Dialog Box

1-122

Optimization Pane: General Tab Overview

Set up optimizations for a model's active configuration set. Optimizations are set for both
simulation and code generation.
Tips

To open the Optimization pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Optimization.

Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system. Selecting a GRT-based or ERT-based system target file
changes the available options. ERT-based target optimizations require a Embedded

Coder® license when generating code. See the Dependencies sections below for
licensing information for each parameter.

See Also

* “Optimization Pane: General” on page 1-120
* “Perform Acceleration”

+ For code generation, see “Performance”

Optimization Pane: Generall

Block reduction

Reduce execution time by collapsing or removing groups of blocks.
Settings

Default: On

¥ On
Simulink software searches for and reduces the following block patterns:
* Redundant type conversions — Unnecessary type conversion blocks, such as
an Int type conversion block with an input and output of type int.
+ Dead code — Blocks or signals in an unused code path.

+ Fast-to-slow Rate Transition block in a single-tasking system — Rate
Transition blocks with an input frequency faster than its output frequency.

I off

Simulink software does not search for block patterns that can be optimized.
Simulation and generated code are not optimized.

Tips

* When you select Block reduction, Simulink software collapses certain groups of
blocks into a single, more efficient block, or removes them entirely. This results in
faster execution during model simulation and in generated code.

* Block reduction does not change the appearance of the source model.

+ Tunable parameters do not prevent a block from being reduced by dead code
elimination.

* Once block reduction takes place, Simulink software does not display the sorted order
for blocks that have been removed.

* If you have a Simulink Coder license, block reduction is intended to remove only the
generated code that represents execution of a block. Other supporting data, such as
definitions for sample time and data types might remain in the generated code.

Dead Code Elimination

Any blocks or signals in an unused code path are eliminated from generated code.

1-123

1 Configuration Parameters Dialog Box

1-124

The following conditions need to be met for a block to be considered part of an unused
code path:

All signal paths for the block end with a block that does not execute. Examples of
blocks that do not execute include Terminator blocks, disabled Assertion blocks,
S-Function blocks configured for block reduction, and To Workspace blocks when
MAT-file logging is disabled for code generation.

No signal paths for the block include global signal storage downstream from the
block.

Tunable parameters do not prevent a block from being reduced by dead code
elimination.

O
I Cut

MeverDeadCodeain

O

= -
AlwsyDesdCodeGain (oyminator

- > '> o L1

Zain Scope

Consider the signal paths in the following block diagram.

If you check Block reduction, Simulink Coder software responds to each signal path
as follows:

For Signal Path... Simulink Coder Software...

Inl to Outl Generates code because dead code elimination conditions are
not met.

In2 to Terminator Does not generate code because dead code elimination
conditions are met.

Optimization Pane: Generall

For Signal Path... Simulink Coder Software...

In3 to Scope Generates code if MAT-file logging is enabled and eliminates
code if MAT-file logging is disabled.

Command-Line Information
Parameter: BlockReduction
Type: string

Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging Off for simulation or during development
No impact for production code generation

Traceability Off

Efficiency On

Safety precaution Off

See Also

* “Time-Based Scheduling”
* “Optimization Pane: General” on page 1-120

“Remove Code for Blocks That Have No Effect on Computational Results”
* “Eliminate Dead Code Paths in Generated Code”

+ For code generation, see “Performance”

1-125

1 Configuration Parameters Dialog Box

1-126

Conditional input branch execution

Improve model execution when the model contains Switch and Multiport Switch blocks.

Settings

Default: On

¥ On

Executes only the blocks required to compute the control input and the data input
selected by the control input. This optimization speeds execution of code generated
from the model. Limits to Switch block optimization:

I off

Only blocks with -1 (inherited) or inf (Constant) sample time can participate.
Blocks with outputs flagged as test points cannot participate.
No multirate block can participate.

Blocks with states cannot participate.

Only S-functions with option SS_OPTION_CAN_BE_CALLED_CONDITIONALLY set
can participate.

Executes all blocks driving the Switch block input ports at each time step.

Command-Line Information

Parameter: Conditional lyExecutelnputs
Type: string

Value: "on”" | "off"

Default: "on*®

Recommended Settings

Application Setting

Debugging No impact

Traceability On

Efficiency On (execution), No impact (ROM, RAM)
Safety precaution No impact

Optimization Pane: Generall

See Also

“Minimize Computations and Storage for Intermediate Results”
+ “Use Conditional Input Branch Execution”

+ “Conditional Execution Behavior”

* “Optimization Pane: General” on page 1-120

For code generation, see “Performance”

1-127

1 Configuration Parameters Dialog Box

1-128

Optimization Pane: Generall

Implement logic signals as Boolean data (vs. double)
Controls the output data type of blocks that generate logic signals.
Settings

Default: On

|7On

Blocks that generate logic signals output a signal of boolean data type. This reduces
the memory requirements of generated code.

I off

Blocks that generate logic signals output a signal of double data type. This ensures
compatibility with models created by earlier versions of Simulink software.

Tips

+ Setting this option on reduces the memory requirements of generated code, because
a Boolean signal typically requires one byte of storage compared to eight bytes for a
double signal.

* Setting this option off allows the current version of Simulink software to run models
that were created by earlier versions of Simulink software that supported only signals
of type double.

* This optimization affects the following blocks:

+ Logical Operator block — This parameter affects only those Logical
Operator blocks whose Output data type parameter specifies Inherit:
Logical (see Configuration Parameters: Optimization). If this
parameter is selected, such blocks output a signal of boolean data type;
otherwise, such blocks output a signal of double data type.

+ Relational Operator block — This parameter affects only those Relational
Operator blocks whose Output data type parameter specifies Inherit:
Logical (see Configuration Parameters: Optimization). If this
parameter is selected, such blocks output a signal of boolean data type;
otherwise, such blocks output a signal of double data type.

Combinatorial Logic block — If this parameter is selected, Combinatorial
Logic blocks output a signal of boolean data type; otherwise, they output

1-129

1 Configuration Parameters Dialog Box

a signal of doublle data type. See Combinatorial Logic in the Simulink
Reference for an exception to this rule.

+ Hit Crossing block — If this parameter is selected, Hit Crossing blocks output
a signal of boolean data type; otherwise, they output a signal of double data
type.

Dependencies

* This parameter is disabled for models created with a version of Simulink software
that supports only signals of type double.

Command-Line Information
Parameter: BooleanDataType
Type: string

Value: "on”" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

Safety precaution On

See Also

* “Optimization Pane: General” on page 1-120

+ For code generation, see “Optimize Generated Code Using Boolean Data for Logical
Signals”

1-130

Optimization Pane: Generall

Application lifespan (days)

Specify how long (in days) an application that contains blocks depending on elapsed or
absolute time should be able to execute before timer overflow.

Settings

Default: inf
Min: Must be greater than zero
Max: inf

Enter a positive (nonzero) scalar value (for example, 0.5) or inf,

If you are licensed for the Embedded Coder product and select an ERT target for your
model, the default value for Application lifespan (days) is 1.

This parameter is ignored when you are operating your model in external mode, have
Mat-file logging enabled, or have a continuous sample time because a 64 bit timer is
required in these cases.

Tips
* Specifying a lifespan, along with the simulation step size, determines the data type

used by blocks to store absolute time values.

* For simulation, setting this parameter to a value greater than the simulation time
will ensure time does not overflow.

* Simulink software evaluates this parameter first against the model workspace. If this
does not resolve the parameter, Simulink software then evaluates it against the base
workspace.

* The Application lifespan also determines the word size used by timers in the
generated code, which can lower RAM usage. For more information, see Timing
Services in the Simulink Coder documentation.

+ Application lifespan, when combined with the step size of each task, determines the
data type used for integer absolute time for each task, as follows:
If your model does not require absolute time, this option affects neither simulation
nor the generated code.

+ If your model requires absolute time, this option optimizes the word size used for
storing integer absolute time in generated code. This ensures that timers do not

1-131

1 Configuration Parameters Dialog Box

1-132

overflow within the lifespan you specify. If you set Application lifespan to inT,
two uint32 words are used.

+ If your model contains fixed-point blocks that require absolute time, this option
affects both simulation and generated code.

For example, using 64 bits to store timing data enables models with a step size of
0.001 microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001 seconds)
for one day would require a 32-bit timer (but it could continue running for 49 days).

A timer will allocate 64 bits of memory if you specify a value of infF.

To minimize the amount of RAM used by time counters, specify a lifespan no longer
than necessary.

Must be the same for top and referenced models.

Optimize the size of counters used to compute absolute and elapsed time.

Command-Line Information

Parameter: LifeSpan

Type: string

Value: positive (nonzero) scalar value or inFf
Default: " inf*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Finite value
Safety precaution inf

See Also

“Time-Based Scheduling and Code Generation”
“Use Timers in Asynchronous Tasks”
“Optimization Pane: General” on page 1-120
“Timers/Counters for Absolute and Elapsed Time”

For code generation, see “Performance”

Optimization Pane: Generall

1-133

1 Configuration Parameters Dialog Box

Use division for fixed-point net slope computation

The Fixed-Point Designer™ software performs net slope computation using division to
handle net slopes when simplicity and accuracy conditions are met.

Settings
Default: OFF
OfF

Performs net slope computation using integer multiplication followed by shifts.
On
Performs net slope computation using a rational approximation of the net slope. This

results in an integer multiplication and/or division when simplicity and accuracy
conditions are met.

Use division for reciprocals of integers only

Performs net slope computation using division when the net slope can be represented
by the reciprocal of an integer and simplicity and accuracy conditions are met.

Tips
* This optimization affects both simulation and code generation.

* When a change of fixed-point slope is not a power of two, net slope computation is
necessary. Normally, net slope computation uses an integer multiplication followed by
shifts. Enabling this new optimization replaces the multiplication and shifts with an
integer division or an integer multiplication and division under certain simplicity and
accuracy conditions.

* Performing net slope computation using division is not always more efficient than
using multiplication followed by shifts. Ensure that the target hardware supports
efficient division.

* To ensure that this optimization occurs:
+ Set the word length of the block so that the software can perform division using

the long data type of the target hardware. That setting avoids use of multiword
operations.

+ Set the Signed integer division rounds to configuration parameter on the
Hardware Implementation pane to Zero or Floor. The optimization does not
occur if you set this parameter to Undefined.

1-134

Optimization Pane: Generall

Set the Integer rounding mode parameter of the block to Simplest or to the
value of the Signed integer division rounds to configuration parameter setting
on the Hardware Implementation pane.

Dependency
This parameter requires a Fixed-Point Designer license.

Command-Line Information

Parameter: UseDivisionForNetSlopeComputation

Type: string

Value: "off" | "on" | "UseDivisionForReciprocalsOfIntegersOnly”
Default: "off"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (when target hardware supports efficient
division)
Off (otherwise)

Safety precaution No impact

See Also

* Use Integer Division for Net Slope Correction

+ “Optimization Pane: General” on page 1-120

1-135

1 Configuration Parameters Dialog Box

1-136

Use floating-point multiplication to handle net slope corrections

The Fixed-Point Designer software uses floating-point multiplication to perform net slope
correction for floating-point to fixed-point casts.

Settings

Default: Off

Y1 On

Use floating-point multiplication to perform net slope correction for floating-point to
fixed-point casts.

Off

Use division to perform net slope correction for floating-point to fixed-point casts.
Tips
* This optimization affects both simulation and code generation.

* When converting from floating point to fixed point, if the net slope is not a power of
two, slope correction using division improves precision. For some processors, use of
multiplication improves code efficiency.

Dependencies

* This parameter requires a Fixed-Point Designer license.
Command-Line Information

Parameter: UseFloatMulNetSlope

Type: string

Value: "on”" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Optimization Pane: Generall

Application Setting

Efficiency On (when target hardware supports efficient
multiplication)
Off (otherwise)

Safety precaution Off

See Also

+ “Optimization Pane: General” on page 1-120

+ “Floating-Point Multiplication to Handle a Net Slope Correction”

1-137

1 Configuration Parameters Dialog Box

1-138

Default for underspecified data type

Specify the default data type to use for inherited data types if Simulink software could
not infer the data type of a signal during data type propagation.

Settings
Default: double

double

Sets the data type for underspecified data types during data type propagation to
double. Simulink uses double as the data type for inherited data types.

single

Sets the data type for underspecified data types during data type propagation to
single. Simulink uses single as the data type for inherited data types.

Tips

* This setting affects both simulation and code generation.

For embedded designs that target single-precision processors, set this parameter to
single to avoid the introduction of double data types.

* Use the Model Advisor Identify questionable operations for strict single-precision
design check to i1dentify the double-precision usage in your model.

Command-Line Information

Parameter: DefaultUnderspecifiedDataType
Type: string

Value: "double® | "single*®

Default: "double*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency single (when target hardware supports efficient
single computations)
double (otherwise)

Optimization Pane: Generall

Application Setting
Safety precaution No impact
See Also

“Underspecified data types” on page 1-254

“Identify questionable operations for strict single-precision design”
+ “Validate a Single-Precision Model”

“Use single Data Type as Default for Underspecified Types”

1-139

1 Configuration Parameters Dialog Box

1-140

Optimize using the specified minimum and maximum values

Optimize generated code using the specified minimum and maximum values for signals
and parameters in the model.

Settings

Default: Off

Y1 On

Optimizes the generated code using range information derived from the minimum
and maximum specified values for signals and parameters in the model.

Off

Ignores specified minimum and maximum values when generating code.

Tips

Before generating code, test the specified values by simulating your model with
simulation range checking enabled using the Diagnostics > Data Validity >
Simulation range checking configuration parameter. If errors or warnings occur,
fix these issues before generating code. Otherwise, optimization might result in
numerical mismatch with simulation.

Specify minimum and maximum values for signals and parameters in the model for:

+ Inport and Outport blocks.

+ Block outputs.

+ Block inputs, for example, for the MATLAB Function and Stateflow Chart blocks.
Simulink.Signal objects.

This optimization does not take into account minimum and maximum values specified

for:
Merge block inputs. To work around this, use a Simulink._Signal object on the
Merge block output and specify the range on this object

* Bus elements.

+ Conditionally-executed subsystem (such as a triggered subsystem) block outputs
that are directly connected to an Outport block.

Optimization Pane: Generall

Outport blocks in conditionally-executed subsystems can have an initial

value specified for use only when the system is not triggered. In this case, the
optimization cannot use the range of the block output because the range might not
cover the initial value of the block.

If you use the Polyspace® Code Prover™software to verify code generated using

this optimization, it might mark code that was previously green as orange. For
example, if your model contains a division where the range of the denominator does
not include zero, the generated code does not include protection against division by
zero. Polyspace Code Prover might mark this code orange because it does not have
information about the minimum and maximum values specified for the inputs to the
division.

The Polyspace Code Prover software does automatically capture some minimum
and maximum values specified in the MATLAB workspace, for example, for
Simulink.Signal and Simulink.Parameter objects. In this example, to provide
range information to the Polyspace Code Prover software, use a Simulink.Signal
object on the input of the division and specify a range that does not include zero.

The Polyspace Code Prover software stores these values in a Data Range Specification
(DRS) file. However, they do not capture all minimum and maximum values specified
in your Simulink model. To provide additional min/max information to Polyspace
Code Prover, you can manually define a DRS file. For more information, see the
Polyspace Code Prover documentation.

If you are using double-precision data types and the Code Generation > Interface
> Support non-finite numbers configuration parameter is selected, this
optimization does not occur.

If your model contains multiple instances of a reusable subsystem and each instance
uses input signals with different specified minimum and maximum values, this
optimization might result in different generated code for each subsystem so code
reuse does not occur. Without this optimization, the Simulink Coder software
generates code once for the subsystem and shares this code among the multiple
instances of the subsystem.

The Model Advisor Check safety-related optimization settings check generates
a warning if this option is selected. For many safety critical applications, it is

not acceptable to remove dead code automatically because this might result in
requirements without traceable code. For more information, see Check safety-related
optimization settings.

1-141

1 Configuration Parameters Dialog Box

+ Enabling this optimization improves the ability of the Fixed-Point Designer software
to eliminate unnecessary utility functions and saturation code from the generated
code.

Dependencies

* This parameter appears for ERT-based targets only.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: UseSpeciftiedMinMax
Type: string

Value: "on*" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On
Safety precaution Off
See Also

* “Optimize Generated Code Using Minimum and Maximum Values”

+ “Optimize Generated Code Using Specified Minimum and Maximum Values” in the
Fixed-Point Designer documentation.

1-142

Optimization Pane: Generall

Remove root level 1/O zero initialization

Specify whether to generate initialization code for root-level inports and outports set to
Zero.

Settings
Default: Off (GUI), "on" (command-line)
v On
Does not generate initialization code for root-level inports and outports set to zero.

I off

Generates initialization code for all root-level inports and outports. Use the default:

* To initialize memory allocated for C MEX S-function wrappers to zero.

* To initialize all internal and external data to zero.

Note: Generated code never initializes data of ImportedExtern or
ImportedExternPointer storage classes, regardless of configuration parameter
settings.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: ZeroExternalMemoryAtStartup
Type: string

Value: "off" | "on*

Default: "on*

Note: The command-line values are reverse of the settings values. Therefore, "on" in the
command line corresponds to the description of “Off” in the settings section, and "off"
in the command line corresponds to the description of “On” in the settings section.

1-143

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (GUI), off (command line) (execution, ROM),
No impact (RAM)

Safety precaution Off (GUI), on (command line)

See Also

“Remove Initialization Code for Root-Level Inports and Outports Set to Zero”

“Optimization Pane: General” on page 1-120

For code generation, see “Performance”

1-144

Optimization Pane: Generall

Use memset to initialize floats and doubles to 0.0

Specify whether to generate code that explicitly initializes floating-point data to 0.0.
Settings

Default: On (GUI), "off" (command-line)

|7On

Uses memset to clear internal storage for floating-point data to integer bit pattern
0 (all bits 0), regardless of type. If your compiler and target CPU both represent
floating-point zero with the integer bit pattern O, consider setting this parameter to
gain execution and ROM efficiency.

I off

Generates code to explicitly initialize storage for data of types Float and double to
0.0. The resulting code is slightly less efficient than code generated when you select
the option.

You should not select this option if you need to ensure that memory allocated for C
MEX S-function wrappers is initialized to zero.

Dependency
This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: InitFltsAndDblsToZero
Type: string

Value: "on® | "off"

Default: "off"

Note: The command-line values are reverse of the settings values. Therefore, "on” in the
command line corresponds to the description of “Off” in the settings section, and "off*
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting
Debugging No impact

1-145

1 Configuration Parameters Dialog Box

1-146

Application
Traceability
Efficiency

Safety precaution

See Also

Setting
No impact

On (GUI), "off" (command-line) (execution,
ROM), No impact (RAM)

No impact

* “Optimization Pane: General” on page 1-120

* For code generation, see “Optimize Generated Code Using memset Function”

Optimization Pane: Generall

Remove internal data zero initialization

Specify whether to generate initialization code for internal work structures, such as block
states and block outputs, to zero.

Settings
Default: Off (GUI), "on" (command-line)

|7On

Does not generate code that initializes internal work structures to zero. An example
of when you might select this parameter is to test the behavior of a design during
warm boot—a restart without full system reinitialization.

Selecting this parameter does not guarantee that memory is in a known state each
time the generated code begins execution. When you run a model or generated S-
function multiple times, each run can produce a different answer, even when calling
the model initialization function in an attempt to reset memory.

If want to get the same answer on every run from a generated S-function, enter the

command clear SFcnNam or clear mex in the MATLAB Command Window before

each run.

I off

Generates code that initializes internal work structures to zero. You should use the

default:

* To ensure that memory allocated for C MEX S-function wrappers is initialized to
Zero

+ For safety critical applications that require that all internal and external data be
initialized to zero

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information
Parameter: ZerolnternalMemoryAtStartup
Type: string

1-147

1 Configuration Parameters Dialog Box

1-148

Value: "off" | "on*”
Default: "on*

Note: The command-line values are reverse of the settings values. Therefore, "on” in the
command line corresponds to the description of “Off” in the settings section, and "off*
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (GUI), off (command line), (execution, ROM),
No impact (RAM)

Safety precaution Off (GUI), on (command line)

See Also

“Optimization Pane: General” on page 1-120

“Eliminate Zero Initialization Code for Internal Data”

For code generation, see “Performance”

Optimization Pane: Generall

Optimize initialization code for model reference

Specify whether to generate initialization code for blocks that have states.
Settings

Default: on

|7On

Suppresses generation of initialization code for blocks that have states unless the
blocks are in a system that can reset its states, such as an enabled subsystem. This
results in more efficient code.

™ off

Generates initialization code for all blocks that have states. Disable this option if the
current model includes a subsystem that resets states, such as an enabled subsystem,
and the model is referred to from another model with a Model block.

Tips

The following restrictions apply to using the Optimize initialization code for model
reference parameter. However, these restrictions do not apply to a Model block that
references a function-call model.

+ In a subsystem that resets states, do not include a Model block that references a
model that has this parameter set to on. For example, in an enabled subsystem with
the States when enabling block parameter set to reset, do not include a Model
block that references a model that has the Optimize initialization code for model
reference parameter set to on.

+ If you set the Optimize initialization code for model reference parameter to off
in a model that includes a Model block that directly references a model, do not set the
Optimize initialization code for model reference parameter for the referenced
model to on.

Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

1-149

1 Configuration Parameters Dialog Box

1-150

Command-Line Information

Parameter: OptimizeModelRefInitCode
Type: string

Value: "on”" | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency On (execution, ROM), No impact (RAM)
Safety precaution No impact

See Also

* “Optimize Initialization Code for a Referenced Model”
* “Optimization Pane: General” on page 1-120

For code generation, see “Performance”

Optimization Pane: Generall

Remove code from floating-point to integer conversions that wraps out-
of-range values

Remove wrapping code that handles out-of-range floating-point to integer conversion
results.

Settings

Default: Off

|7On

Removes code when out-of-range conversions occur. Select this check box if code
efficiency is critical to your application and the following conditions are true for at
least one block in the model:

+ Computing the outputs or parameters of a block involves converting floating-point
data to integer or fixed-point data.

* The Saturate on integer overflow check box is cleared in the Block Parameters
dialog box.

Caution Execution of generated code might not produce the same results as
simulation.

I off
Results for simulation and execution of generated code match when out-of-range
conversions occur. The generated code 1s larger than when you select this check box.
Tips

+ Selecting this check box reduces the size and increases the speed of the generated
code at the cost of potentially producing results that do not match simulation in the
case of out-of-range values.

+ Selecting this check box affects code generation results only for out-of-range values
and cannot cause code generation results to differ from simulation results for in-range
values.

Dependency

This parameter requires a Simulink Coder license.

1-151

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: EfficientFloat2IntCast
Type: string

Value: "on”" | "off"

Default: "off*

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On (execution, ROM), No impact (RAM)
Safety precaution Off for simulation or during development

On for production code generation

See Also

“Remove Code From Floating-Point to Integer Conversions That Wraps Out-of-Range
Values”

+ “Optimization Pane: General” on page 1-120

1-152

Optimization Pane: Generall

Remove code from floating-point to integer conversions with saturation
that maps NaN to zero

Remove code that handles floating-point to integer conversion results for NaN values.

Settings

Default: On

|7On

Removes code when mapping from NaN to integer zero occurs. Select this check box if
code efficiency is critical to your application and the following conditions are true for
at least one block in the model:

+ Computing outputs or parameters of a block involves converting floating-point
data to integer or fixed-point data.

* The Saturate on integer overflow check box is selected in the Block
Parameters dialog box.

Caution Execution of generated code might not produce the same results as
simulation.

™ off

Results for simulation and execution of generated code match when mapping from
NaN to integer zero occurs. The generated code is larger than when you select this
check box.

Tips

Selecting this check box reduces the size and increases the speed of the generated
code at the cost of producing results that do not match simulation in the case of NaN
values.

Selecting this check box affects code generation results only for NaN values and cannot
cause code generation results to differ from simulation results for any other values.

Dependencies

This parameter requires a Simulink Coder license.

1-153

1 Configuration Parameters Dialog Box

For ERT-based targets, this parameter is enabled when you select the floating-

point numbers and non-finite numbers check boxes in the Code Generation >
Interface pane.

Command-Line Information

Parameter: EfficientMapNaN2IntZero
Type: string

Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On

Safety precaution Off for simulation or during development

On for production code generation
See Also

+ “Remove Code That Maps NaN to Integer Zero”

+ “Optimization Pane: General” on page 1-120

1-154

Optimization Pane: Generall

Remove code that protects against division arithmetic exceptions

Specify whether to generate code that guards against division by zero for fixed-point
data.

Settings
Default: On

|7On

Does not generate code that guards against division by zero for fixed-point data.
When you select this option, simulation results and results from generated code
might not be in bit-for-bit agreement.

I off

Generates code that guards against division by zero for fixed-point data.
Dependencies

* This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

Command-Line Information

Parameter: NoFixptDivByZeroProtection
Type: string

Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

Safety precaution Off

See Also

+ “Remove Code That Guards Against Division by Zero for Fixed-Point Data”

1-155

1 Configuration Parameters Dialog Box

* “Optimization Pane: General” on page 1-120

+ For code generation, see “Performance”

1-156

Optimization Pane: Generall

Compiler optimization level

Sets the degree of optimization used by the compiler when generating code for
acceleration.

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Specifies the compiler not to optimize code. This results in faster build times.
Optimizations on (faster runs)

Specifies the compiler to generate optimized code. The generated code will run faster,
but the model build will take longer than if optimizations are off.

Tips

* The default Optimizations offis a good choice for most models. This quickly
produces code that can be used with acceleration.

+ Set Optimizations on to optimize your code. The fast running code produced by
optimization can be advantageous if you will repeatedly run your model with the
accelerator.

Command-Line Information

Parameter: SimCompilerOptimization
Type: string

Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Acceleration”

1-157

1 Configuration Parameters Dialog Box

* “Interact with the Acceleration Modes Programmatically”

* “Customize the Acceleration Build Process”

1-158

Optimization Pane: Generall

Verbose accelerator builds

Select the amount of information displayed during code generation for Simulink
Accelerator mode, referenced model Accelerator mode, and Rapid Accelerator mode.

Settings
Default: Off

™ off

Display limited amount of information during the code generation process.
¥ On

Display progress information during code generation, and show the compiler options
in use.

Command-Line Information
Parameter: AccelVerboseBuild
Type: string

Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

For more information about AccelVerboseBui ld, see “Controlling Verbosity During
Code Generation”.

1-159

1 Configuration Parameters Dialog Box

Optimization Pane: Signals and Parameters

The Optimization > Signals and Parameters pane includes the following parameters
when you select a GRT-based system target file:

Simulation and code generation

¥| Signal storage reuse

Code generation

Default parameter behavior |Tunab|e A | |CDnﬂgure...| Inline invariant signals

Y| Enable local block outputs ¥| Reuse local block outputs
V| Eliminate superfluous local variables (expression folding)
Minimize data copies between local and global variables

Y| Use memcpy for vector assignment Memcpy threshold (bytes): 64

Loop unrolling threshold: S Maximurm stack size (bytes): Inherit from target -

The Optimization > Signals and Parameters pane includes the following parameters
when you select an ERT-based system target file:

Simulation and code generation

¥| Signal storage reuse

Code generation

Default parameter behavior: |In|ined - | |Conﬂgure...| Inline invariant signals

¥| Enable local block outputs ¥| Reuse local block outputs

J| Eliminate superfluous local variables (expression folding) ¥| Reuse global block outputs

Optimize global data access: |N0ne v

Simplify array indexing
¥| Use memcpy for vector assignment Memcpy threshold (hytes): 64

Pack Boolean data into bitfislds

Loop unrolling threshold: S Manirmumm stack size (bytes): Inherit from target -
Pass reusable subsystem outputs as: |Struct.1re reference - |
Parameter structure: |N0nHierarchicaI v|

In this section...

“Optimization Pane: Signals and Parameters Tab Overview” on page 1-162

1-160

Optimization Pane: Signals and Parameters

In this section...

“Default parameter behavior” on page 1-162
“Signal storage reuse” on page 1-165
“Enable local block outputs” on page 1-167
“Reuse local block outputs” on page 1-169

“Eliminate superfluous local variables (Expression folding)” on page 1-171

“Reuse global block outputs” on page 1-174

“Minimize data copies between local and global variables” on page 1-175

“Inline invariant signals” on page 1-177

“Optimize global data access” on page 1-179
“Simplify array indexing” on page 1-181

“Use memcpy for vector assignment” on page 1-183
“Memcpy threshold (bytes)” on page 1-185

“Pack Boolean data into bitfields” on page 1-186
“Bitfield declarator type specifier” on page 1-188
“Loop unrolling threshold” on page 1-190
“Maximum stack size (bytes)” on page 1-191

“Pass reusable subsystem outputs as” on page 1-193

“Parameter structure” on page 1-195

“Model Parameter Configuration Dialog Box” on page 1-197

1-161

1 Configuration Parameters Dialog Box

1-162

Optimization Pane: Signals and Parameters Tab Overview
Set up optimizations for a model's active configuration set.
Tips

* To open the Optimization: Signals and Parameters pane, in the Simulink Editor,
select Simulation > Model Configuration Parameters > Optimization >
Signals and Parameters.

* Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system. Selecting a GRT-based or ERT-based system target file
changes the available options. ERT-based target optimizations require a Embedded
Coder license when generating code. See the Dependencies sections below for
licensing information for each parameter.

See Also

* “Optimization Pane: Signals and Parameters” on page 1-160

* For code generation, see “Performance”

Default parameter behavior

Transform numeric block parameters into constant inlined values in the generated code.
Settings

Default: Tunable for GRT targets | Inlined for ERT targets

Inlined

Set Default parameter behavior to Inlined to reduce global RAM usage and
increase efficiency of the generated code. The code does not allocate memory to
represent numeric block parameters such as the Gain parameter of a Gain block.
Instead, the code inlines the literal numeric values of these block parameters.

Tunable

Set Default parameter behavior to Tunable to enable tunability of numeric block
parameters in the generated code. The code represents numeric block parameters
and variables that use the storage class Auto, including numeric MATLAB variables,
as tunable fields of a global parameters structure.

Optimization Pane: Signals and Parameters

Tips

* Whether you set Default parameter behavior to Inlined or to Tunable, create
parameter data objects to preserve tunability for block parameters. For more
information, see “Control Parameter Representation and Declare Tunable Parameters
in the Generated Code”.

* When you switch from a system target file that is not ERT-based to one that is ERT-
based, Default parameter behavior sets to Inlined by default. However, you can
change the setting of Default parameter behavior later.

* When a top model uses referenced models or if a model is referenced by another
model:
+ All referenced models must set Default parameter behavior to Inlined if the
top model has Default parameter behavior set to Inlined.

+ The top model can specify Default parameter behavior as Tunable or
Inlined.

+ If your model contains an Environment Controller block, you can suppress code
generation for the branch connected to the Sim port if you set Default parameter
behavior to Inlined and the branch does not contain external signals.

Dependencies

When you set Default parameter behavior to Inlined, you enable these configuration
parameters:

+ “Parameter structure” on page 1-195

* “Inline invariant signals” on page 1-177

Command-Line Information

Parameter: Defaul tParameterBehavior

Type: string

Value: "Inlined” | "Tunable*

Default: "Tunable® for GRT targets | "Inlined” for ERT targets

Recommended Settings

Application Setting

Debugging Tunable during development
Inlined for production code generation

1-163

1 Configuration Parameters Dialog Box

1-164

Application
Traceability
Efficiency

Safety precaution

See Also

* “Inline Block Parameter Values”

Generated Code”

* Optimization Pane

Setting
Inlined
Inlined

No impact

“Control Parameter Representation and Declare Tunable Parameters in the

Parameter Storage, Interfacing, and Tuning

“Inline Block Parameters and Propagate Constant Values”

Optimization Pane: Signals and Parameters

Signal storage reuse

Reuse signal memory.

Settings

Default: On

|7On

Simulink software reuses memory buffers allocated to store block input and output
signals, reducing the memory requirement of your real-time program.

I off

Simulink software allocates a separate memory buffer for each block's outputs.

This makes all block outputs global and unique, which in many cases significantly
increases RAM and ROM usage.

Tips

This option applies only to signals with storage class Auto.
Signal storage reuse can occur only among signals that have the same data type.

Clearing this option can substantially increase the amount of memory required to
simulate large models.

Clear this option if you need to:

+ Debug a C-MEX S-function

* Use a Floating Scope or a Display block with the Floating display option selected
to inspect signals in a model that you are debugging

Simulink software opens an error dialog if Signal storage reuse is enabled and you
attempt to use a Floating Scope or floating Display block to display a signal whose
buffer has been reused.

Dependencies

This parameter enables:

“Enable local block outputs” on page 1-167
“Reuse local block outputs” on page 1-169

“Eliminate superfluous local variables (Expression folding)” on page 1-171

1-165

1 Configuration Parameters Dialog Box

“Minimize data copies between local and global variables” on page 1-175 if
you have a Simulink Coder license.

“Optimize global data access” on page 1-179 if you have an Embedded Coder
license.

Command-Line Information
Parameter:OptimizeBlocklOStorage
Type: string

Value: "on® | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

Safety precaution No impact
See Also

+ “Optimize Buffers in the Generated Code”

* Signal Storage, Optimization, and Interfacing
* Optimizing a Model for Code Generation

+ “Vector Operation Optimization”

* Optimization Pane

1-166

Optimization Pane: Signals and Parameters

Enable local block outputs

Specify whether block signals are declared locally or globally.
Settings
Default: On
v On
Block signals are declared locally in functions.

I off
Block signals are declared globally.

Tips

+ Ifit is not possible to declare an output as a local variable, the generated code
declares the output as a global variable.

+ If you are constrained by limited stack space, you can turn Enable local block
outputs off and still benefit from memory reuse.

Dependencies

* This parameter requires a Simulink Coder license.

+ This parameter is enabled by Signal storage reuse.
Command-Line Information

Parameter: LocalBlockOutputs

Type: string

Value: "on*" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

1-167

1 Configuration Parameters Dialog Box

1-168

Application Setting
Safety precaution No impact
See Also

* Signal Storage, Optimization, and Interfacing

+ Signals with Auto Storage Class

+ “Enable and Reuse Local Block Outputs in Generated Code”
* Optimizing a Model for Code Generation

+ Optimization Pane

Optimization Pane: Signals and Parameters

Reuse local block outputs

Specify whether Simulink Coder software reuses signal memory.
Settings

Default: On

v On

* Simulink Coder software reuses signal memory whenever possible, reducing stack
size where signals are being buffered in local variables.

+ Selecting this parameter trades code traceability for code efficiency.

™ off

Signals are stored in unique locations.
Dependencies
This parameter:

+ Is enabled by Signal storage reuse.
* Requires a Simulink Coder license.
Command-Line Information

Parameter: BufferReuse

Type: string

Value: "on® | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

Safety precaution No impact

1-169

1 Configuration Parameters Dialog Box

1-170

See Also

* Signal Storage, Optimization, and Interfacing

+ Signals with Auto Storage Class

+ “Enable and Reuse Local Block Outputs in Generated Code”
* Optimizing a Model for Code Generation

+ Optimization Pane

Optimization Pane: Signals and Parameters

Eliminate superfluous local variables (Expression folding)

1-171

1 Configuration Parameters Dialog Box

Collapse block computations into single expressions.
Settings

Default: On

M On

+ Enables expression folding.

* Eliminates local variables, incorporating the information into the main code
statement.

* Improves code readability and efficiency.
I off

Disables expression folding.
Dependencies

* This parameter requires a Simulink Coder license.

+ This parameter is enabled by Signal storage reuse.
Command-Line Information

Parameter: ExpressionFolding
Type: string

Value: "on® | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging Off

Traceability No impact for simulation or during development
Off for production code generation

Efficiency On

Safety precaution No impact

See Also

* “Minimize Computations and Storage for Intermediate Results”

1-172

Optimization Pane: Signals and Parameters

* Expression Folding
* Optimizing a Model for Code Generation

* Optimization Pane

1-173

1 Configuration Parameters Dialog Box

1-174

Reuse global block outputs
Reuse global memory for block outputs.
Settings

Default: On

¥ On

+ Software reuses signal memory whenever possible, reducing global variable use.

+ Selecting this parameter trades code traceability for code efficiency.
I ofr

Signals are stored in unique locations.
Dependencies
This parameter:

* Is enabled by “Signal storage reuse” on page 1-165.
* Requires an Embedded Coder license.

* Appears only for ERT-based targets.

Command-Line Information

Parameter: GlobalBufferReuse

Type: string

Value: "on*" | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On (execution, ROM, RAM)
Safety precaution No impact

Optimization Pane: Signals and Parameters

See Also

* “Reuse Block Outputs in the Generated Code”
Signal Storage, Optimization, and Interfacing
+ Signals with Auto Storage Class

* Optimizing a Model for Code Generation

+ Optimization Pane

Minimize data copies between local and global variables

1-175

1 Configuration Parameters Dialog Box

Reuse existing global variables to store temporary results.
Settings
Default: Off

Y1 On

Writes data for block outputs to global variables, reducing RAM consumption and
execution time.

Off

Writes data for block outputs to local variables.

Dependencies

* This parameter requires a Simulink Coder license.

This parameter is enabled by “Signal storage reuse” on page 1-165.

With an Embedded Coder license, if you select an embedded target such as ert.tlc,
the software replaces Minimize data copies between local and global variables
check box with the Optimize global data access list. When Minimize data copies
between local and global variables is selected, Optimize global data access is
set to Use global to hold temporary results.

Command-Line Information
Parameter: EnhancedBackFolding
Type: string

Value: "on" | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency On (execution, ROM, RAM)
Safety precaution No impact

See Also

* “Signal Representation in Generated Code”

1-176

Optimization Pane: Signals and Parameters

* Optimization Pane

+ For code generation, see “Performance”

Inline invariant signals

1-177

1 Configuration Parameters Dialog Box

1-178

Transform symbolic names of invariant signals into constant values.
Settings

Default: Off

I On

Simulink Coder software uses the numerical values of model parameters, instead

of their symbolic names, in generated code. An invariant signal is not inline if it is
nonscalar, complex, or the block inport the signal is attached to takes the address of
the signal.

™ off

Uses symbolic names of model parameters in generated code.
Dependencies

* This parameter requires a Simulink Coder license.

* This parameter is enabled when you set Default parameter behavior to Inlined.
Command-Line Information

Parameter: InlinelnvariantSignals

Type: string

Value: "on® | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging Off
Traceability Off
Efficiency On

Safety precaution No impact
See Also

“Inline Invariant Signals”

Optimization Pane: Signals and Parameters

Optimize global data access
Select global variable optimization.
Settings

Default: None

None
Use default optimizations.
Use global to hold temporary results
Maximize use of global variables.
Minimize global data access

Minimize use of global variables by using local variables to hold intermediate values.
Dependencies

* This parameter is enabled by “Signal storage reuse” on page 1-165.
* This parameter requires an Embedded Coder license.

+ Appears only for ERT-based targets.
Command-Line Information

Parameter: GlobalVariableUsage

Type: string

Value: "None™ | "Use global to hold temporary results® | "Minimize
global data access”

Default: "None*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency "Use global to hold temporary results*®
(RAM), "Minimize global data access”
(ROM)

Safety precaution No impact

1-179

1 Configuration Parameters Dialog Box

See Also

* “Optimize Global Variable Usage”

“Signal Representation in Generated Code”

* Optimization Pane

For code generation, see “Performance”

1-180

Optimization Pane: Signals and Parameters

Simplify array indexing

Replace multiply operations in array indices when accessing arrays in a loop.
Settings

Default: Off

Y1 On

In array indices, replace multiply operations with add operations when accessing
arrays in a loop in the generated code. When the original signal is multidimensional,
the Embedded Coder generates one-dimensional arrays, resulting in multiply
operations in the array indices. Using this setting eliminates costly multiply
operations when accessing arrays in a loop in the C/C++ program. This optimization
(commonly referred to as strength reduction) is particularly useful if the C/C++
compiler on the target platform does not have similar functionality. No appearance
of multiply operations in the C/C++ program does not imply that the C/C++ compiler
does not generate multiply instructions.

Off

Leave multiply operations in array indices when accessing arrays in a loop.
Dependencies
This parameter:

* Requires a Embedded Coder license to generate code.

* Appears only for ERT-based targets.

Command-Line Information
Parameter: StrengthReduction
Type: string

Value: "on" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-181

1 Configuration Parameters Dialog Box

Efficiency No impact
Safety precaution No impact
See Also

“Simplify Multiply Operations In Array Indexing”
* Optimization Pane

1-182

Optimization Pane: Signals and Parameters

Use memcpy for vector assignment

Optimize code generated for vector assignment by replacing For loops with memcpy.
Settings
Default: On

|7On

Enables use of memcpy for vector assignment based on the associated threshold
parameter Memcpy threshold (bytes). memcpy is used in the generated code if the
number of array elements times the number of bytes per element is greater than or
equal to the specified value for Memcpy threshold (bytes). One byte equals the
width of a character in this context.

I off

Disables use of memcpy for vector assignment.
Dependencies

+ This parameter requires a Simulink Coder license.
* When selected, this parameter enables the associated parameter Memcpy threshold
(bytes).

Command-Line Information

Parameter: EnableMemcpy
Type: string

Value: "on*® | "off*"
Default: "on*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency On

Safety precaution No impact

1-183

1 Configuration Parameters Dialog Box

See Also

“Optimize Code Generated for Vector Assignments”
Optimizing a Model for Code Generation

Optimization Pane

1-184

Optimization Pane: Signals and Parameters

Memcpy threshold (bytes)

Specify the minimum array size in bytes for which memcpy function calls should replace
for loops in the generated code for vector assignments.

Settings
Default: 64

Specify the array size, in bytes, at which the code generator begins to use memcpy instead
of for loops for vector assignments.

Dependencies

* This parameter requires a Simulink Coder license.

+ This parameter is enabled when you select Use memcpy for vector assignment.
Command-Line Information

Parameter: MemcpyThreshold
Type: integer

Value: any valid quantity of bytes
Default: 64

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Accept default or determine target-specific optimal
value

Safety precaution No impact

See Also

+ “Optimize Code Generated for Vector Assignments”
* Optimizing a Model for Code Generation

* Optimization Pane

1-185

1 Configuration Parameters Dialog Box

1-186

Pack Boolean data into bitfields

Specify whether Boolean signals are stored as one—bit bitfields or as a Boolean data type.

Note: You cannot use this optimization when you generate code for a target that specifies
an explicit structure alignment.

Settings

Default: Off

Y1 On

Stores Boolean signals into one—bit bitfields in global block I/O structures or DWork
vectors. This will reduce RAM, but might cause more executable code.

Off

Stores Boolean signals as a Boolean data type in global block I/O structures or
DWork vectors.

Dependencies
This parameter:

* Requires a Embedded Coder license.

+ Appears only for ERT-based targets.

Command-Line Information
Parameter: BooleansAsBitfields
Type: string

Value: "on® | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Optimization Pane: Signals and Parameters

Application Setting

Efficiency Off (execution, ROM), On (RAM)
Safety precaution No impact

See Also

* For code generation, see “Optimize Generated Code By Packing Boolean Data Into
Bitfields”

* “Optimization Pane: General” on page 1-120

+ “Bitfield declarator type specifier” on page 1-188

1-187

1 Configuration Parameters Dialog Box

1-188

Bitfield declarator type specifier

Specify the bitfield type when selecting configuration parameter “Pack Boolean data into
bitfields” on page 1-186.

Note: The optimization benefit is dependent upon your choice of target.

Settings
Default: uint_T
v uint_T
The type specified for a bitfield declaration is an unsigned int.

r uchar T
The type specified for a bitfield declaration is an unsigned char.

Tip

The “Pack Boolean data into bitfields” on page 1-186 configuration parameter default
setting uses unsigned integers. This might cause an increase in RAM if the bitfields are
small and distributed. In this case, uchar_T might use less RAM depending on your
target.

Dependency
Pack Boolean data into bitfields enables this parameter.

Command-Line Information

Parameter: BitfieldContainerType
Type: string

Value: uint_T | uchar_T

Default: uint_T

Recommended Settings

Application Setting
Debugging No impact

Optimization Pane: Signals and Parameters

Traceability No impact
Efficiency Target dependent
Safety precaution No impact

See Also

“Pack Boolean data into bitfields” on page 1-186

1-189

1 Configuration Parameters Dialog Box

1-190

Loop unrolling threshold

Specify the minimum signal or parameter width for which a for loop is generated.
Settings

Default: 5

Specify the array size at which the code generator begins to use a for loop instead of
separate assignment statements to assign values to the elements of a signal or parameter
array.

When there are perfectly nested loops, the code generator uses a for loop if the product

of the loop counts for all loops in the perfect loop nest is greater than or equal to the
threshold.

Dependency

This parameter requires a Simulink Coder license.
Command-Line Information

Parameter: RollThreshold

Type: string

Value: any valid value

Default: "5*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency >0

Safety precaution >1

See Also

* Configuring a Loop Unrolling Threshold

* “Target Language Compiler”

Optimization Pane: Signals and Parameters

Maximum stack size (bytes)

Specify the maximum stack size in bytes for your model.
Settings

Default:Inherit from target

Inherit from target
The Simulink Coder software assigns the maximum stack size to the smaller value of
the following:

* The default value (200,000 bytes) set by the Simulink Coder software
* Value of the TLC variable MaxStackSize in the system target file
<Specify a value>

Specify a positive integer value. Simulink Coder software assigns the maximum
stack size to the specified value.

Note: If you specify a maximum stack size for a model, the estimated required stack

size of a referenced model must be less than the specified maximum stack size of the
parent model.

Tips

+ If you specify the maximum stack size to be zero, then the generated code implements
all variables as global data.

+ If you specify the maximum stack to be inf, then the generated code contains the
least number of global variables.

Command-Line Information
Parameter: MaxStackSize
Type: int

Value: Any valid value

Default: Inherit from target

Recommended Settings

Application Setting
Debugging No impact

1-191

1 Configuration Parameters Dialog Box

Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Customize Stack Space Allocation” in the Simulink Coder documentation

1-192

Optimization Pane: Signals and Parameters

Pass reusable subsystem outputs as
Specify how a reusable subsystem passes outputs.
Settings

Default: Structure reference

Structure reference

Passes reusable subsystem outputs as a pointer to a structure stored in global
memory.

Individual arguments

Passes each reusable subsystem output argument as an address of a local, instead
of as a pointer to an area of global memory containing all output arguments. This
option reduces global memory usage and eliminates copying local variables back to
global block I/0 structures. When the signals are allocated as local variables, there
may be an increase in stack size. If the stack size increases beyond a level that you
want, use the default setting. The maximum number of output arguments passed
individually is 12.

Note: The default option is used for reusable subsystems that have signals with variable
dimensions.

Dependencies

This parameter:

+ Requires a Embedded Coder license.

* Appears only for ERT-based targets.

Command-Line Information

Parameter: PassReuseOutputArgsAs

Type: string

Value: "Structure reference” | "Individual arguments*”
Default: "Structure reference”

1-193

1 Configuration Parameters Dialog Box

1-194

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Arguments”

Setting
No impact
No impact

Structure reference (ROM), Individual
arguments (execution, RAM)

No impact

“Optimize Generated Code By Passing Reusable Subsystem Outputs as Individual

“Generate Reusable Code for Subsystems Shared Across Models”

Optimization Pane: Signals and Parameters

Parameter structure

Control how parameter data is generated for reusable subsystems.
Settings
Default: Hierarchical

Hierarchical

Generates a separate header file, defining an independent parameter structure, for

each subsystem that meets the following conditions:

* The subsystem Code generation function packaging parameter is set to
Reusable function.

* The subsystem does not violate any code reuse limitations.

* The subsystem does not access parameters other than its own (such as
parameters of the root-level model).

Each subsystem parameter structure is referenced as a substructure of the root-level
parameter data structure, creating a structure hierarchy.

NonHierarchical

Generates a single, flat parameter data structure. Subsystem parameters are defined
as fields within the structure. A nonhierarchical data structure can reduce compiler
padding between word boundaries, producing more efficient compiled code.

Dependencies
+ This parameter appears only for ERT-based targets.

* This parameter requires a Embedded Coder license when generating code.

+ This parameter is enabled when you set Default parameter behavior to Inlined.

Command-Line Information

Parameter: InlinedParameterPlacement
Type: string

Value: "Hierarchical® | "NonHierarchical”
Default: "Hierarchical "

Recommended Settings

Application Setting
Debugging No impact

1-195

1 Configuration Parameters Dialog Box

Application Setting
Traceability Hierarchical
Efficiency NonHierarchical

Safety precaution No impact

See Also

“Flat Structures for Reusable Subsystem Parameters”
Nonvirtual Subsystem Code Generation

Optimizing a Model for Code Generation

* Optimization Pane

1-196

Optimization Pane: Signals and Parameters

Model Parameter Configuration Dialog Box

The Model Parameter Configuration dialog box allows you to declare specific

tunable parameters when you set Default parameter behavior to Inlined. The
parameters that you select appear in the generated code as tunable parameters. For
more information about Default parameter behavior, see Default parameter behavior.

ik Model Pararmeter Configuration: wdp E@

Description

[efine the global (funable) parameters for your model. These parameters will affect the generated code by enabling accessto parameters
by other modules.

Source list Glohal (tunahle) parameters

MATLAE workspace w Marme Storage class Storage type gualifier

Marme

(i balance

2 gain

Refresh list Add to table == e

Ready (0]:4 H Cancel][Help][Apply

Note Simulink Coder software ignores the settings of this dialog box if a model contains
references to other models. However, you can still generate code that uses tunable
parameters with model references, using Simulink.Parameter objects (see “Tunable
Parameters in the Generated Code for Referenced Models” for more information).

The dialog box has the following controls.
Source list

Displays a list of workspace variables. The options are:

1-197

1 Configuration Parameters Dialog Box

1-198

*+ MATLAB workspace — Lists all variables in the MATLAB workspace that have
numeric values.

+ Referenced workspace variables — Lists only those variables referenced by the model.

Refresh list

Updates the source list. Click this button if you have added a variable to the workspace
since the last time the list was displayed.

Add to table
Adds the variables selected in the source list to the adjacent table of tunable parameters.
New

Defines a new parameter and adds it to the list of tunable parameters. Use this button to
create tunable parameters that are not yet defined in the MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB workspace.
You must create the variable yourself.

Storage class
Used for code generation. For more information, see “Storage class” on page 3-8.
Storage type qualifier

Used for code generation. For more information, see “Storage type qualifier” on page
3-8.

Optimization Pane: Stateflow

Optimization Pane: Stateflow

When Simulink Coder is installed on your system, the Optimization > Stateflow pane
includes the following parameters:

Code generation
Use bitsets for storing state configuration

Use bitsets for storing Boolean data

Base storage type for automatically created enumerations: | Mative Integer -

In this section...

“Optimization Pane: Stateflow Tab Overview” on page 1-200
“Use bitsets for storing state configuration” on page 1-201

“Use bitsets for storing Boolean data” on page 1-203

“Base storage type for automatically created enumerations” on page 1-205

1-199

1 Configuration Parameters Dialog Box

1-200

Optimization Pane: Stateflow Tab Overview

Set up optimizations for a model's active configuration set.
Tips

+ To open the Optimization: Stateflow pane, in the Simulink Editor, select Simulation
> Model Configuration Parameters > Optimization > Stateflow.

Simulink Coder optimizations appear only when the Simulink Coder product is
installed on your system.

See Also

+ “Optimize Generated Code” in the Stateflow documentation

Optimization Pane: Stateflow

Use bitsets for storing state configuration

Use bitsets to reduce the amount of memory required to store state configuration
variables.

Settings
Default: Off

|7On

Stores state configuration variables in bitsets. Potentially reduces the amount of
memory required to store the variables. Potentially requires more instructions to
access state configuration, which can result in less optimal code.

I off

Stores state configuration variables in unsigned bytes. Potentially increases the
amount of memory required to store the variables. Potentially requires fewer
instructions to access state configuration, which can result in more optimal code.

Tips

+ Selecting this check box can significantly reduce the amount of memory required to
store the variables. However, it can increase the amount of memory required to store
target code if the target processor does not include instructions for manipulating
bitsets.

+ Select this check box for Stateflow charts that have a large number of sibling states at
a given level of the hierarchy.

* Clear this check box for Stateflow charts with a small number of sibling states at a
given level of the hierarchy.

Dependency

This parameter requires a Simulink Coder license.
Command-Line Information

Parameter: StateBitsets

Type: string

Value: "on® | "off"
Default: "off"

1-201

1 Configuration Parameters Dialog Box

1-202

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

Off

Off

Off (execution, ROM), On (RAM)
No impact

“Optimize Generated Code” in the Stateflow documentation

“Optimization Pane: Stateflow” on page 1-199

Optimization Pane: Stateflow

Use bitsets for storing Boolean data

Use bitsets to reduce the amount of memory required to store Boolean data.
Settings
Default: Off

|7On

Stores Boolean data in bitsets. Potentially reduces the amount of memory required to
store the data. Potentially requires more instructions to access the data, which can
result in less optimal code.

I off

Stores Boolean data in unsigned bytes. Potentially increases the amount of memory
required to store the data. Potentially requires fewer instructions to access the data,
which can result in more optimal code.

Tips

+ Select this check box for Stateflow charts that reference Boolean data infrequently.
+ Clear this check box for Stateflow charts that reference Boolean data frequently.
Dependency

This parameter requires a Simulink Coder license.

Command-Line Information
Parameter: DataBitsets
Type: string

Value: "on® | "off"
Default: "off"

Recommended Settings

Application Setting

Debugging Off

Traceability Off

Efficiency Off (execution, ROM), On (RAM)

1-203

1 Configuration Parameters Dialog Box

Safety precaution No impact

See Also

“Optimize Generated Code” in the Stateflow documentation
“Optimization Pane: Stateflow” on page 1-199

1-204

Optimization Pane: Stateflow

Base storage type for automatically created enumerations

Set the storage type and size for enumerations created with active state output.
Settings

Default: Native Integer

Native Integer

Default target integer type
int32

32 bit signed integer type
intl6

16 bit signed integer type
int8

8 bit signed integer type
uintl6

16 bit unsigned integer type
uints

8 bit unsigned integer type

Tips
* The default Native Integer is recommended for most models.

+ If you need a smaller memory footprint for the generated enumerations, set the
storage type to a smaller size. The size must be large enough to hold the number of
states in the chart.

Dependency
This parameter requires a Simulink Coder license.

Command-Line Information

Parameter: ActiveStateOutputEnumStorageType

Type: string

Value: "Native Integer®™ | "int32" | "intl6" | "int8" | "uintl6" | "uint8~
Default: "Native Integer”

1-205

1 Configuration Parameters Dialog Box

Diagnostics Pane: Solver

1-206

Select: Solver
- Solver Algebraic loop: ’warning
--Diata Import/Export
-Optimization Minimize algebraic loop: [warmng
-I-Diagnostics Block priority violation: ’warning
- Sample Time _ o -
- Data Validity Min step size violation: [warmng
-~ Type Conversion Sample hit time adjusting: [none
- Connectivity . . o
o Consecutive zero crossings violation: ’error
- Compatibility
--Model Referencing Unspecified inheritability of sample time: [warning
- Saving Solver data inconsistency: [none
- Stateflows
--Hardware Implementat... | Automatic solver parameter selection: [none
“Model Referencing Extraneous discrete derivative signals: [error
-Simulation Target
-Code Generation State name clash: ’warning
SimState interface checksum mismatch: [warning
SimState object from earlier release: [error

In this section...

“Solver Diagnostics Overview” on page 1-207
“Algebraic loop” on page 1-209

“Minimize algebraic loop” on page 1-211

“Block priority violation” on page 1-213

“Min step size violation” on page 1-215

“Sample hit time adjusting” on page 1-217
“Consecutive zero-crossings violation” on page 1-219
“Unspecified inheritability of sample time” on page 1-221
“Solver data inconsistency” on page 1-223

“Automatic solver parameter selection” on page 1-225
“Extraneous discrete derivative signals” on page 1-227

“State name clash” on page 1-229

Diagnostics Pane: Solver

In this section...

“SimState interface checksum mismatch” on page 1-230

“SimState object from earlier release” on page 1-232

Solver Diagnostics Overview

1-207

1 Configuration Parameters Dialog Box

Specify what diagnostic actions Simulink software should take, if any, when it detects an
abnormal condition with the solver.

Configuration

Set the parameters displayed.

Tips

* To open the Diagnostics: Solver pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Diagnostics. The Solver pane appears.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.

See Also

* Diagnosing Simulation Errors
+ Sample Time Diagnostics

* Data Validity Diagnostics

* Type Conversion Diagnostics

+ Connectivity Diagnostics

+ Compatibility Diagnostics

* Model Referencing Diagnostics
+ Saving Diagnostics

+ Diagnostics Pane: Solver

1-208

Diagnostics Pane: Solver

Algebraic loop

Select the diagnostic action to take if Simulink software detects an algebraic loop while
compiling the model.

Settings
Default: warning

none

When the Simulink software detects an algebraic loop, the software tries to solve the
algebraic loop. If the software cannot solve the algebraic loop, it reports an error and
the simulation terminates.

warning

When Simulink software detects an algebraic loop, it displays a warning and tries to
solve the algebraic loop. If the software cannot solve the algebraic loop, it reports an
error and the simulation terminates.

error

When Simulink software detects an algebraic loop, it terminates the simulation,
displays an error message, and highlights the portion of the block diagram that
comprises the loop.

Tips

* An algebraic loop generally occurs when an input port with direct feedthrough is
driven by the output of the same block, either directly, or by a feedback path through
other blocks with direct feedthrough. An example of an algebraic loop is this simple
scalar loop.

u

— e |
* When a model contains an algebraic loop, Simulink software calls a loop-solving
routine at each time step. The loop solver performs iterations to determine the

solution to the problem (if it can). As a result, models with algebraic loops run slower
than models without them.

* Use the error option to highlight algebraic loops when you simulate a model. This
causes Simulink software to display an error dialog (the Diagnostic Viewer) and

1-209

1 Configuration Parameters Dialog Box

recolor portions of the diagram that represent the first algebraic loop that it detects.
Simulink software uses red to color the blocks and lines that constitute the loop.
Closing the error dialog restores the diagram to its original colors.

+ See Algebraic Loops for more information.
Command-Line Information

Parameter: AlgebraiclLoopMsg

Type: string

Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging error
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

+ Algebraic Loops
* Diagnosing Simulation Errors

+ Diagnostics Pane: Solver

1-210

Diagnostics Pane: Solver

Minimize algebraic loop

Select the diagnostic action to take if artificial algebraic loop minimization cannot be
performed for an atomic subsystem or Model block because an input port has direct
feedthrough.

When you set the Minimize algebraic loop occurrences parameter for an atomic
subsystem or a Model block, if Simulink detects an artificial algebraic loop, it attempts
to eliminate the loop by checking for non-direct-feedthrough blocks before simulating the
model. If Simulink cannot minimize the artificial algebraic loop, the simulation performs
the diagnostic action specified by the Minimize algebraic loop parameter.

Settings
Default: warning

none
Simulink takes no action.
warning
Simulink displays a warning that it cannot minimize the artificial algebraic loop.
error
Simulink terminates the simulation and displays an error that it cannot minimize
the artificial algebraic loop.
Tips
+ If the port is involved in an artificial algebraic loop, Simulink software can remove the
loop only if at least one other input port in the loop lacks direct feedthrough.
+ Simulink software cannot minimize artificial algebraic loops containing signals

designated as test points (see Working with Test Points).

Command-Line Information

Parameter: ArtificialAlgebraiclLoopMsg
Type: string

Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

1-211

1 Configuration Parameters Dialog Box

Application Setting
Efficiency No impact
Traceability No impact
Safety precaution error

See Also

* Minimizing Artificial Algebraic Loops Using Simulink
* Diagnosing Simulation Errors
* Working with Test Points

+ Diagnostics Pane: Solver

1-212

Diagnostics Pane: Solver

Block priority violation

Select the diagnostic action to take if Simulink software detects a block priority
specification error.

Settings
Default: warning

warning

When Simulink software detects a block priority specification error, it displays a
warning.

error

When Simulink software detects a block priority specification error, it terminates the
simulation and displays an error message.

Tips

* Simulink software allows you to assign update priorities to blocks. Simulink software

executes the output methods of higher priority blocks before those of lower priority
blocks.

* Simulink software honors the block priorities that you specify only if they are
consistent with the Simulink block sorting algorithm. If Simulink software is unable
to honor a user specified block priority, it generates a block priority specification
error.

Command-Line Information

Parameter: BlockPriorityViolationMsg
Type: string

Value: "warning” | "error”

Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-213

1 Configuration Parameters Dialog Box

See Also

Controlling and Displaying the Sorted Order
Diagnosing Simulation Errors

Diagnostics Pane: Solver

1-214

Diagnostics Pane: Solver

Min step size violation

Select the diagnostic action to take if Simulink software detects that the next simulation
step is smaller than the minimum step size specified for the model.

Settings
Default: warning

warning
Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* A minimum step size violation can occur if the specified error tolerance for the model
requires a step size smaller than the specified minimum step size. See Min step size
and Maximum order for more information.

* Simulink software allows you to specify the maximum number of consecutive
minimum step size violations permitted (see Number of consecutive min steps).

Command-Line Information
Parameter: MinStepSizeMsg
Type: string

Value: "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Min step size

1-215

1 Configuration Parameters Dialog Box

1-216

Maximum order

Number of consecutive min steps
“Purely Discrete Systems”
Diagnosing Simulation Errors

Diagnostics Pane: Solver

Diagnostics Pane: Solver

Sample hit time adjusting

Select the diagnostic action to take if Simulink software makes a minor adjustment to a
sample hit time while running the model.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Tips

Simulink software might change a sample hit time if that hit time is close to the hit
time for another task. If Simulink software considers the difference to be due only
to numerical errors (for example, precision issues or roundoff errors), it changes the
sample hits of the faster task or tasks to exactly match the time of the slowest task
that has that hit.

Over time, these sample hit changes might cause a discrepancy between the
numerical simulation results and the actual theoretical results.

When this option is set to warning, the MATLAB Command Window displays a
warning like the following when Simulink software detects a change in the sample hit
time:

Warning: Timing engine warning: Changing the hit time for ...

Command-Line Information
Parameter: TimeAdjustmentMsg
Type: string

Value: "none” | "warning”
Default: "none*

Recommended Settings

Application Setting

Debugging No impact

1-217

1 Configuration Parameters Dialog Box

Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Diagnosing Simulation Errors

* Diagnostics Pane: Solver

1-218

Diagnostics Pane: Solver

Consecutive zero-crossings violation

Select the diagnostic action to take when Simulink software detects that the number of
consecutive zero crossings exceeds the specified maximum.

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ If you select warning or error, Simulink software reports the current simulation
time, the number of consecutive zero crossings counted, and the type and name of the
block in which Simulink software detected the zero crossings.

* For more information, see Preventing Excessive Zero Crossings.
Dependency

This diagnostic applies only when you are using a variable-step solver and the zero-
crossing control is set to either Enable all or Use local settings.

Command-Line Information

Parameter: MaxConsecutiveZCsMsg
Type: string

Value: "none*® | "warning*®

Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-219

1 Configuration Parameters Dialog Box

1-220

Application Setting

Efficiency No impact

Safety precaution warning or error
See Also

+ Zero-Crossing Detection

* Zero-Crossing Control

* Number of consecutive zero crossings
* Time tolerance

* Diagnosing Simulation Errors

* Diagnostics Pane: Solver

Diagnostics Pane: Solver

Unspecified inheritability of sample time

Select the diagnostic action to take if this model contains S-functions that do not specify
whether they preclude this model from inheriting their sample times from a parent
model.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* Not specifying an inheritance rule may lead to incorrect simulation results.

* Simulink software checks for this condition only if the solver used to simulate this
model is a fixed-step discrete solver and the periodic sample time constraint for the
solver is set to ensure sample time independence

* For more information, see Periodic sample time constraint.

Command-Line Information
Parameter: UnknownTslnhSupMsg
Type: string

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-221

1 Configuration Parameters Dialog Box

See Also

Periodic sample time constraint
Diagnosing Simulation Errors

Diagnostics Pane: Solver

1-222

Diagnostics Pane: Solver

Solver data inconsistency

Select the diagnostic action to take if Simulink software detects S-functions that have
continuous sample times, but do not produce consistent results when executed multiple
times.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ Consistency checking can cause a significant decrease in performance (up to 40%).

+ Consistency checking is a debugging tool that validates certain assumptions made by
Simulink ODE solvers. Use this option to:

+ Validate your S-functions and ensure that they adhere to the same rules as
Simulink built-in blocks.

+ Determine the cause of unexpected simulation results.

* Ensure that blocks produce constant output when called with a given value of ¢
(time).

+ Simulink software saves (caches) output, the zero-crossing, the derivative, and state
values from one time step for use in the next time step. The value at the end of a time
step can generally be reused at the start of the next time step. Solvers, particularly
stiff solvers such as ode23s and odel5s, take advantage of this to avoid redundant
calculations. While calculating the Jacobian matrix, a stiff solver can call a block's
output functions many times at the same value of t.

* When consistency checking is enabled, Simulink software recomputes the appropriate
values and compares them to the cached values. If the values are not the same, a
consistency error occurs. Simulink software compares computed values for these
quantities:

1-223

1 Configuration Parameters Dialog Box

1-224

* Outputs

Zero crossings
* Derivatives
+ States

Command-Line Information

Parameter: ConsistencyChecking
Type: string

Value: "none” | "warning” | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency none
Safety precaution No impact
See Also

+ Diagnosing Simulation Errors
* Choosing a Solver

* Diagnostics Pane: Solver

Diagnostics Pane: Solver

Automatic solver parameter selection

Select the diagnostic action to take if Simulink software changes a solver parameter
setting.

Settings
Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.
Tips
When enabled, this option notifies you if:
+ Simulink changes a user-modified parameter to make it consistent with other model

settings.

* Simulink automatically selects solver parameters for the model, such as
FixedStepSize.

For example, if you simulate a discrete model that specifies a continuous solver, Simulink
software changes the solver type to discrete and displays a warning about this change at
the MATLAB command line.

Command-Line Information
Parameter: SolverPrmCheckMsg
Type: string

Value: "none® | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact

1-225

1 Configuration Parameters Dialog Box

Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Diagnosing Simulation Errors
* Choosing a Solver

+ Diagnostics Pane: Solver

1-226

Diagnostics Pane: Solver

Extraneous discrete derivative signals

Select the diagnostic action to take when a discrete signal appears to pass through a
Model block to the input of a block with continuous states.

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ This error can occur if a discrete signal passes through a Model block to the input of
a block with continuous states, such as an Integrator block. In this case, Simulink
software cannot determine with certainty the minimum rate at which it needs to reset
the solver to solve this model accurately.

+ If this diagnostic is set to none or warning, Simulink software resets the solver
whenever the value of the discrete signal changes. This ensures accurate simulation
of the model if the discrete signal is the source of the signal entering the block with
continuous states. However, if the discrete signal is not the source of the signal
entering the block with continuous states, resetting the solver at the rate the discrete
signal changes can lead to the solver being reset more frequently than necessary,
slowing down the simulation.

+ If this diagnostic is set to error, Simulink software halts when compiling this model
and displays an error.

Dependency

This diagnostic applies only when you are using a variable-step ode solver and the block
diagram contains Model blocks.

Command-Line Information
Parameter: ModelReferenceExtraNoncontSigs

1-227

1 Configuration Parameters Dialog Box

1-228

Type: string
Value: "none*® | "warning” | "error*
Default: "error*

Recommended Settings

Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Diagnosing Simulation Errors
Choosing a Solver

Diagnostics Pane: Solver

Setting

No impact
No impact
No impact

No impact

Diagnostics Pane: Solver

State name clash

Select the diagnostic action to take when a name is used for more than one state in the

model.
Settings
Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

Tips

* This diagnostic applies for continuous and discrete states during simulation.

* This diagnostic applies only if you save states to the MATLAB workspace using the
format Structure or Structure with time. If you do not save states in structure
format, the state names are not used, and therefore the diagnostic will not warn you

about a naming conflict.

Command-Line Information
Parameter: StateNameClashWarn
Type: string

Value: "none*® | "warning”
Default: "warning”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* Diagnosing Simulation Errors

Setting

No impact
No impact
No impact

No impact

1-229

1 Configuration Parameters Dialog Box

1-230

* Data Import/Export Pane
+ “Save Runtime Data from Simulation”

+ Diagnostics Pane: Solver

SimState interface checksum mismatch

Use this check to ensure that the interface checksum is identical to the model checksum
before loading the SimState.

Settings
Default: warning

none

Simulink software does not compare the interface checksum to the model checksum.
warning

The interface checksum in the SimState is different than the model checksum.
error

When Simulink detects that a change in the configuration settings occurred after
saving the SimState, it does not load the SimState and reports an error.

Command-Line Information

Parameter: SimStatelnterfaceChecksumMismatchMsg
Type: string

Value: "warning”® | "error” | "none*

Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Save and Restore Simulation State as SimState”

Diagnostics Pane: Solver

+ Simulink.BlockDiagram.getChecksum

1-231

1 Configuration Parameters Dialog Box

SimState object from earlier release

Use this check to report that the SimState was generated by an earlier version of
Simulink.

Settings
Default: error

warning

Simulink will restore as much of this SimState as possible.
error

When Simulink detects that the SimState was generated by an earlier version of
Simulink, it does not attempt to load the object.

Command-Line Information

Parameter: SimStateOlderReleaseMsg
Type: string

Value: "warning® | "error”

Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

“Save and Restore Simulation State as SimState”

1-232

Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Sample Time

Source block specifies -1 sample time: [warning ']
Multitask rate transition: [error ']
Single task rate transition: [none v]
Multitask conditienally executed subsystem: [error "]
Tasks with equal priority: [warning ']
Enforce sample times specified by Signal Specification blocks: [warning ']

In this section...

“Sample Time Diagnostics Overview” on page 1-234

“Source block specifies -1 sample time” on page 1-235
“Multitask rate transition” on page 1-237

“Single task rate transition” on page 1-239

“Multitask conditionally executed subsystem” on page 1-241
“Tasks with equal priority” on page 1-243

“Enforce sample times specified by Signal Specification blocks” on page 1-245

1-233

1 Configuration Parameters Dialog Box

1-234

Sample Time Diagnostics Overview

Specify what diagnostic actions Simulink software should take, if any, when it detects a
compilation error related to model sample times.

Configuration

Set the parameters displayed.

Tips

* To open the Sample Time pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Sample Time.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

+ Diagnosing Simulation Errors
* Solver Diagnostics

+ Data Validity Diagnostics

* Type Conversion Diagnostics

+ Connectivity Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics
+ Saving Diagnostics

+ Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Source block specifies -1 sample time

Select the diagnostic action to take if a source block (such as a Sine Wave block) specifies
a sample time of -1.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* The Random Source block does not obey this parameter. If its Sample time
parameter is set to -1, the Random Source block inherits its sample time from its
output port and never produces warnings or errors.

* Some Communications System Toolbox™ blocks internally inherit sample times,
which can be a useful and valid modeling technique. Set this parameter to none for
these types of models.

Command-Line Information

Parameter: InheritedTsInSrcMsg
Type: string

Value: "none® | "warning® | "error”
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-235

1 Configuration Parameters Dialog Box

See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Sample Time

1-236

Diagnostics Pane: Sample Time

Multitask rate transition

Select the diagnostic action to take if an invalid rate transition occurred between two
blocks operating in multitasking mode.

Settings
Default: error

warning
Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ This parameter allows you to adjust error checking for sample rate transitions
between blocks that operate at different sample rates.

* Use this option for models of real-time multitasking systems to ensure detection
of illegal rate transitions between tasks that can result in a task's output being
unavailable when needed by another task. You can then use Rate Transition blocks to
eliminate such illegal rate transitions from the model.

Command-Line Information

Parameter: MultiTaskRateTransMsg
Type: string

Value: "warning” | "error*

Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

+ Rate Transition block

1-237

1 Configuration Parameters Dialog Box

1-238

Model Execution and Rate Transitions
Single-Tasking and Multitasking Execution Modes
“Handle Rate Transitions”

Tasking mode for periodic sample times
Diagnosing Simulation Errors

Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Single task rate transition

Select the diagnostic action to take if a rate transition occurred between two blocks
operating in single-tasking mode.

Settings
Default: none

none

Simulink takes no action.
warning

Simulink displays a warning.
error

Simulink terminates the simulation and displays an error message.
Tips
* This parameter allows you to adjust error checking for sample rate transitions

between blocks that operate at different sample rates.

* Use this parameter when you are modeling a single-tasking system. In such systems,
task synchronization is not an issue.

+ Since variable step solvers are always single tasking, this parameter applies to them.

Command-Line Information

Parameter: SingleTaskRateTransMsg
Type: string

Value: "none*” | "warning” | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none or error

1-239

1 Configuration Parameters Dialog Box

1-240

See Also

* Rate Transition block

* Model Execution and Rate Transitions

+ Single-Tasking and Multitasking Execution Modes
* “Handle Rate Transitions”

+ Tasking mode for periodic sample times

+ Diagnosing Simulation Errors

+ Diagnostics Pane: Sample Time

Diagnostics Pane: Sample Time

Multitask conditionally executed subsystem

Select the diagnostic action to take if Simulink software detects a subsystem that may
cause data corruption or non-deterministic behavior.

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips
* These types of subsystems can be caused by either of the following conditions:

Your model uses multitasking solver mode and it contains an enabled subsystem
that operates at multiple rates.

* Your model contains a conditionally executed subsystem that can reset its states
and that contains an asynchronous subsystem.

These types of subsystems can cause corrupted data or nondeterministic behavior in a
real-time system that uses code generated from the model.

* For models that use multitasking solver mode and contain an enabled subsystem
that operates at multiple rates, consider using single-tasking solver mode or using a
single-rate enabled subsystem instead.

* For models that contain a conditionally executed subsystem that can reset its states
and that contains an asynchronous subsystem, consider moving the asynchronous
subsystem outside the conditionally executed subsystem.

Command-Line Information

Parameter: MultiTaskCondExecSysMsg
Type: string
Value: "none
Default: "error-

warning® | “error”

1-241

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Tasking mode for periodic sample times

Diagnosing Simulation Errors

* Diagnostics Pane: Sample Time

1-242

Diagnostics Pane: Sample Time

Tasks with equal priority

Select the diagnostic action to take if Simulink software detects two tasks with equal
priority that can preempt each other in the target system.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* This condition can occur when one asynchronous task of the target represented by
this model has the same priority as one of the target's asynchronous tasks.

+ This option must be set to Error if the target allows tasks having the same priority to
preempt each other.

Command-Line Information

Parameter: TasksWithSamePriorityMsg
Type: string

Value: "none® | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none or error

1-243

1 Configuration Parameters Dialog Box

See Also

Diagnosing Simulation Errors

“Rate Transitions and Asynchronous Blocks”

Diagnostics Pane: Sample Time

1-244

Diagnostics Pane: Sample Time

Enforce sample times specified by Signal Specification blocks

Select the diagnostic action to take if the sample time of the source port of a signal
specified by a Signal Specification block differs from the signal's destination port.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ The Signal Specification block allows you to specify the attributes of the signal
connected to its input and output ports. If the specified attributes conflict with the
attributes specified by the blocks connected to its ports, Simulink software displays an
error when it compiles the model, for example, at the beginning of a simulation. If no
conflict exists, Simulink software eliminates the Signal Specification block from the
compiled model.

* You can use the Signal Specification block to ensure that the actual attributes of a
signal meet desired attributes, or to ensure correct propagation of signal attributes
throughout a model.

Command-Line Information

Parameter: SigSpecEnsureSampleTimeMsg
Type: string

Value: "none® | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-245

1 Configuration Parameters Dialog Box

Efficiency No impact
Safety precaution error
See Also

+ Diagnosing Simulation Errors
* Signal Specification block

Diagnostics Pane: Sample Time

1-246

Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Signals

Signal resolution: ’Explicit only '] Wrap on overflow: [warning ']
Division by singular matrix: ’none v] Saturate on overflow: [warning v]
Underspecified data types: ’none '] Inf or MaN block output: [none ']
Simulation range checking: [warning v] "rt" prefix for identifiers: [error v]
Parameters

Detect downcast: [warning v] Detect overflow: [warning v]
Detect underflow: ’none '] Detect precision loss: ’warning ']
Detect loss of tunability: [warning v]

Data Store Memory Block

Detect read before write: [Use local settings v] Multitask data store: ’error v]
Detect write after read: ’Use local settings '] Duplicate data store names: ’none ']
Detect write after write: [Use local settings v]

Merge Block

Multiple driving blocks executing at the same time step will result in an error when "Underspecified initialization detection:" is set to
"Simplified".

Maodel Initialization

Underspecified initialization detection: ’Simpliﬁed ']
Debugging

Array bounds exceeded: [none ']
Model Verification block enabling: [Use local settings ']

In this section...

“Data Validity Diagnostics Overview” on page 1-249
“Signal resolution” on page 1-250
“Division by singular matrix” on page 1-252

“Underspecified data types” on page 1-254

“Simulation range checking” on page 1-257

1-247

1 Configuration Parameters Dialog Box

In this section...

“Wrap on overflow” on page 1-259

“Saturate on overflow” on page 1-261

“Inf or NaN block output” on page 1-263

“'rt" prefix for identifiers” on page 1-265

“Detect downcast” on page 1-267

“Detect overflow” on page 1-269

“Detect underflow” on page 1-271

“Detect precision loss” on page 1-273

“Detect loss of tunability” on page 1-275

“Detect read before write” on page 1-277

“Detect write after read” on page 1-279

“Detect write after write” on page 1-281

“Multitask data store” on page 1-283

“Duplicate data store names” on page 1-285

“Detect multiple driving blocks executing at the same time step” on page 1-287
“Underspecified initialization detection” on page 1-289
“Check undefined subsystem initial output” on page 1-291
“Check preactivation output of execution context” on page 1-295
“Check runtime output of execution context” on page 1-297
“Array bounds exceeded” on page 1-301

“Model Verification block enabling” on page 1-303

1-248

Diagnostics Pane: Data Validity

Data Validity Diagnostics Overview

Specify what diagnostic action Simulink software should take, if any, when it detects a
condition that could compromise the integrity of data defined by the model, as well as the
Data Validity parameters that pertain to code generation, and are used to debug a model.

Configuration

Set the parameters displayed.

Tips

* To open the Data Validity pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Data Validity.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

+ Diagnosing Simulation Errors
* Solver Diagnostics

* Sample Time Diagnostics

* Type Conversion Diagnostics

+ Connectivity Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics
+ Saving Diagnostics

* Diagnostics Pane: Data Validity

1-249

1 Configuration Parameters Dialog Box

1-250

Signal resolution

Select how Simulink software resolves signals to Simul ink.Signal objects. See
“Explicit and Implicit Symbol Resolution” for more information.

Settings
Default: Explicit only

Explicit only
Do not perform implicit signal resolution. Only explicitly specified signal resolution
occurs. This is the recommended setting.

Explicit and implicit
Perform implicit signal resolution wherever possible, without posting any warnings
about the implicit resolutions.

Explicit and warn implicit

Perform implicit signal resolution wherever possible, posting a warning of each
implicit resolution that occurs.

Tips

+ Use the Signal Properties dialog box (see Signal Properties Dialog Box) to specify
explicit resolution for signals.

+ Use the State Attributes pane on dialog boxes of blocks that have discrete states,
e.g., the Discrete-Time Integrator block, to specify explicit resolution for discrete
states.

* Multiple signals can resolve to the same signal object and have the properties that the
object specifies.

MathWorks® discourages using implicit signal resolution except for fast prototyping,
because implicit resolution slows performance, complicates model validation, and can
have nondeterministic effects.

* Simulink software provides the disableimplicitsignalresolution function,
which you can use to change settings throughout a model so that it does not use
implicit signal resolution.

Command-Line Information
Parameter: SignalResolutionControl
Type: string

Diagnostics Pane: Data Validity

Value: "UseLocalSettings” | "TryResolveAll" | "TryResolveAllWithWarning*®
Default: "UseLocalSettings*®

SignalResolutionControl Valuve Equivalent Signal Resolution Value
"UseLocalSettings*® Explicit only
"TryResolveAll* Explicit and implicit
"TryResolveAllWithWarning*® Explicit and warn implicit

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Explicit only
See Also

* Diagnosing Simulation Errors
+ Simulink.Signal

+ Signal Properties Dialog Box

* Discrete-Time Integrator block

* Diagnostics Pane: Data Validity

1-251

1 Configuration Parameters Dialog Box

1-252

Division by singular matrix

Select the diagnostic action to take if the Product block detects a singular matrix while
inverting one of its inputs in matrix multiplication mode.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

For models referenced in Accelerator mode, Simulink ignores the Division by singular
matrix parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information

Parameter: CheckMatrixSingularityMsg
Type: string

Value: "none® | "warning® | "error”
Default: "none*

Recommended Settings

Application Setting
Debugging No impact

Diagnostics Pane: Data Validity

Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Diagnosing Simulation Errors
* Product block

+ Diagnostics Pane: Data Validity

1-253

1 Configuration Parameters Dialog Box

1-254

Underspecified data types

Select the diagnostic action to take if Simulink software could not infer the data type of a
signal during data type propagation.

Identify and Resolve Underspecified Data Types

This example shows how to use the configuration parameter Underspecified data
types to identify and resolve an underspecified data type.

1
2

Open the example model ex_underspecified_data_ types.

On the Configuration Parameters > Diagnostics > Data Validity pane, set
Underspecified data types to warning.

Update the diagram.

The signals in the model use the data type uint8, and the model generates a
warning.

Open the Diagnostic Viewer. The warning indicates that the output signal of the
Constant block has an underspecified data type.

Open the Constant block dialog box.

On the Signal Attributes tab, Output data type is set to Inherit: Inherit
via back propagation. The Constant block output inherits a data type from the
destination block. In this case, the destination is the Sum block.

Open the Sum block dialog box.

On the Signal Attributes tab, Accumulator data type is set to Inherit:
Inherit via internal rule. Sum blocks cast all of their input signals to the
selected accumulator data type. In this case, the accumulator data type is specified
as an inherited type.

Open the Inport block dialog box. On the Signal Attributes tab, Data type is set to
uints.

The data type of the Constant block output signal is underspecified because the source
and destination blocks each apply an inherited data type. The signal cannot identify

a data type to inherit. However, the model uses heuristic rules to determine the most
appropriate type to use, uint8.

To resolve the underspecified data type, you can use one of these techniques:

Diagnostics Pane: Data Validity

* On the Signal Attributes tab of the Constant block dialog box, specify Output data
type as a particular numeric type, such as uints8.

* On the Signal Attributes tab of the Sum block dialog box, select the check box
Require all inputs to have the same data type.

With this setting, the Sum block applies the data type of the first input, uint8, to the
underspecified data type of the second input.

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.
Command-Line Information
Parameter: UnderSpecifiedDataTypeMsg
Type: string

Value: "none® | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

+ “Default for underspecified data type” on page 1-138
* Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-255

1 Configuration Parameters Dialog Box

+ “Use single Data Type as Default for Underspecified Types”

1-256

Diagnostics Pane: Data Validity

Simulation range checking

Select the diagnostic action to take when signals exceed specified minimum or maximum
values.

Settings

Default: none

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

Use a block's Qutput minimum or Minimum parameter to specify the minimum
value that the block should output.

Use a block's Output maximum or Maximum parameter to specify the maximum
value that the block should output.

Enable this diagnostic to check whether block outputs exceed the minimum or
maximum values that you specified.

When Simulation range checking is enabled, Simulink software performs signal
range checking at every time step during a simulation. Setting this diagnostic to
warning or error can cause a decrease in simulation performance.

For models referenced in Accelerator mode, Simulink ignores the Simulation range
checking parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

1-257

1 Configuration Parameters Dialog Box

1-258

Command-Line Information

Parameter: SignalRangeChecking
Type: string

Value: "none” | "warning” | "error”
Default: "none*

Recommended Settings

Application Setting

Debugging warning or error
Traceability warning or error
Efficiency none

Safety precaution error

See Also

+ “Signal Ranges”
* Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Wrap on overflow

Select the diagnostic action to take if the value of a signal overflows the signal data type
and wraps around.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ This diagnostic applies only to overflows which wrap for integer and fixed-point data
types.

* This diagnostic also reports division by zero for all data types, including floating-point
data types.

* To check for floating-point overflows (for example, InF or NaN) for double or single
data types, select the Inf or NaN block output diagnostic. (See “Inf or NaN block
output” on page 1-263 for more information.)

* For models referenced in Accelerator mode, Simulink ignores the Wrap on overflow
parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

Command-Line Information
Parameter: IntegerOverflowMsg

1-259

1 Configuration Parameters Dialog Box

1-260

Type: string
Value: "none*® | "warning” | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

+ “Handle Overflows in Simulink Models”
* Diagnosing Simulation Errors

“Local and Global Data Stores”

* Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Saturate on overflow

Select the diagnostic action to take if the value of a signal is too large to be represented
by the signal data type, resulting in a saturation.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ This diagnostic applies only to overflows which saturate for integer and fixed-point
data types.

+ To check for floating-point overflows (for example, Inf or NaN) for doublle or single
data types, select the Inf or NaN block output diagnostic. (See “Inf or NaN block
output” on page 1-263 for more information.)

Command-Line Information

Parameter: IntegerSaturationMsg
Type: string

Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact
Safety precaution error

1-261

1 Configuration Parameters Dialog Box

1-262

See Also

“Handle Overflows in Simulink Models”
* Diagnosing Simulation Errors

“Local and Global Data Stores”

* Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Inf or NaN block output

Select the diagnostic action to take if the value of a block output is Inf or NaN at the
current time step.

Note: Accelerator mode does not support any runtime diagnostics.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips
* This diagnostic applies only to floating-point overflows for double or single data

types.

* To check for integer and fixed-point overflows, select the Wrap on overflow
diagnostic. (See “Wrap on overflow” on page 1-259 for more information.)

* For models referenced in Accelerator mode, Simulink ignores the Info or NaN block
output parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: Signal InfNanChecking

1-263

1 Configuration Parameters Dialog Box

Type: string
Value: "none*® | "warning” | "error*
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-264

Diagnostics Pane: Data Validity

"rt" prefix for identifiers

Select the diagnostic action to take during code generation if a Simulink object name (the
name of a parameter, block, or signal) begins with rt.

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ The default setting (error) causes code generation to terminate with an error if it
encounters a Simulink object name (parameter, block, or signal), that begins with rt.

* This is intended to prevent inadvertent clashes with generated identifiers whose
names begins with rt.

Command-Line Information

Parameter: RTPrefix

Type: string

Value: "none® | "warning® | "error-
Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-265

1 Configuration Parameters Dialog Box

See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-266

Diagnostics Pane: Data Validity

Detect downcast

Select the diagnostic action to take when a parameter downcast occurs during
simulation.

Settings
Default: error

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* A parameter downcast occurs if the computation of block output required converting
the parameter's specified type to a type having a smaller range of values (for example,
from uint32 to Uint8).

+ This diagnostic applies only to named tunable parameters.

Command-Line Information

Parameter: ParameterDowncastMsg
Type: string
Value: "none
Default: "error-

warning® | "error”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-267

1 Configuration Parameters Dialog Box

See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-268

Diagnostics Pane: Data Validity

Detect overflow

Select the diagnostic action to take if a parameter overflow occurs during simulation.

Settings

Default: error

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Tips

A parameter overflow occurs if Simulink software encounters a parameter whose data
type's range is not large enough to accommodate the parameter's ideal value (the
ideal value is either too large or too small to be represented by the data type). For
example, suppose that the parameter's ideal value is 200 and its data type is int8.

Overflow occurs in this case because the maximum value that int8 can represent is
127.

Parameter overflow differs from parameter precision loss, which occurs when the
ideal parameter value is within the range of the data type and scaling being used, but
cannot be represented exactly.

Both parameter overflow and precision loss are quantization errors, and the
distinction between them can be a fine one. The Detect overflow diagnostic reports
all quantization errors greater than one bit. For very small parameter quantization
errors, precision loss will be reported rather than an overflow when

(Max + Slope) 2V, 3,.; > (Min— Slope)

where

* Max is the maximum value representable by the parameter data type
* Min is the minimum value representable by the parameter data type

+ Slope is the slope of the parameter data type (slope = 1 for integers)

1-269

1 Configuration Parameters Dialog Box

* Vigea 1s the ideal value of the parameter

Command-Line Information

Parameter: ParameterOverflowMsg
Type: string

Value: "none® | "warning® | "error*
Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-270

Diagnostics Pane: Data Validity

Detect underflow

Select the diagnostic action to take when a parameter underflow occurs during
simulation.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* Parameter underflow occurs when Simulink software encounters a parameter whose
data type does not have enough precision to represent the parameter's ideal value
because the ideal value is too small.

* When parameter underflow occurs, casting the ideal value to the data type causes the
parameter's modeled value to become zero, and therefore to differ from its ideal value.

Command-Line Information

Parameter: ParameterUnderflowMsg
Type: string

Value: "none® | "warning® | "error-
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-271

1 Configuration Parameters Dialog Box

See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-272

Diagnostics Pane: Data Validity

Detect precision loss

Select the diagnostic action to take when parameter precision loss occurs during
simulation.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* Precision loss occurs when Simulink software encounters a parameter whose data
type does not have enough precision to represent the parameter's value exactly. As a
result, the modeled value differs from the ideal value.

* Parameter precision loss differs from parameter overflow, which occurs when the
range of the parameter's data type, i.e., that maximum value that it can represent, is
smaller than the ideal value of the parameter.

Both parameter overflow and precision loss are quantization errors, and the
distinction between them can be a fine one. The Detect Parameter overflow
diagnostic reports all parameter quantization errors greater than one bit. For very
small parameter quantization errors, precision loss will be reported rather than an
overflow when

(Max + Slope) 2V, 3,.; > (Min— Slope)

where

* Max is the maximum value representable by the parameter data type.
* Min is the minimum value representable by the parameter data type.
+ Slope is the slope of the parameter data type (slope = 1 for integers).

* Vidgea 18 the full-precision, ideal value of the parameter.

1-273

1 Configuration Parameters Dialog Box

Command-Line Information

Parameter: ParameterPrecisionLossMsg
Type: string

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

* Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-274

Diagnostics Pane: Data Validity

Detect loss of tunability

Select the diagnostic action to take when an expression with tunable variables is reduced
to its numerical equivalent.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tip

If a tunable workspace variable is modified by Mask Initialization code, or is used in an
arithmetic expression with unsupported operators or functions, the expression is reduced
to a numeric expression and therefore cannot be tuned.

Command-Line Information

Parameter: ParameterTunabilitylLossMsg
Type: string

Value: "none® | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

* Diagnosing Simulation Errors

1-275

1 Configuration Parameters Dialog Box

* Tunable Expressions

* Diagnostics Pane: Data Validity

1-276

Diagnostics Pane: Data Validity

Detect read before write

Select the diagnostic action to take if the model attempts to read data from a data store
to which it has not written data in this time step.

Settings
Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in Accelerator and Rapid Accelerator mode, if
the Detect read before write parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
toDisable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: ReadBeforeWriteMsg

1-277

1 Configuration Parameters Dialog Box

Type: string

Value: "UselLocalSettings® | "DisableAll"™ | "EnableAllAsWarning” |
"EnableAllAsError-

Default: "UseLocalSettings”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

+ Diagnosing Simulation Errors

* “Local and Global Data Stores”
* Data Store Memory block

+ Simulink.Signal object

* Diagnostics Pane: Data Validity

1-278

Diagnostics Pane: Data Validity

Detect write after read

Select the diagnostic action to take if the model attempts to write data to a data store
after previously reading data from it in the current time step.

Settings
Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in Accelerator and Rapid Accelerator mode, if
the Detect write after read parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
toDisable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: WriteAfterReadMsg

1-279

1 Configuration Parameters Dialog Box

Type: string

Value: "UselLocalSettings® | "DisableAll"™ | "EnableAllAsWarning” |
"EnableAllAsError-

Default: "UseLocalSettings”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

+ Diagnosing Simulation Errors

* “Local and Global Data Stores”
* Data Store Memory block

+ Simulink.Signal object

* Diagnostics Pane: Data Validity

1-280

Diagnostics Pane: Data Validity

Detect write after write

Select the diagnostic action to take if the model attempts to write data to a data store
twice in succession in the current time step.

Settings
Default: Use local settings

Use local settings

For each local data store (defined by a Data Store Memory block or
Simulink.Signal object in a model workspace) use the setting specified by the
block. For each global data store (defined by a Simulink.Signal object in the base
workspace) disable the diagnostic.

Disable all

Disables this diagnostic for all data stores accessed by the model.
Enable all as warnings

Displays diagnostic as a warning at the MATLAB command line.
Enable all as errors

Halts the simulation and displays the diagnostic in an error dialog box.

Note: During model referencing simulation in Accelerator and Rapid Accelerator mode, if
the Detect write after write parameter is set to Enable all as warnings, Enable
all as errors, or Use local settings, Simulink temporarily changes the setting
toDisable all.

You can use the Model Advisor to identify referenced models for which Simulink changes
configuration this parameter setting during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.

2 Select By Task.

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information
Parameter: WriteAfterWriteMsg

1-281

1 Configuration Parameters Dialog Box

Type: string

Value: "UselLocalSettings® | "DisableAll"™ | "EnableAllAsWarning” |
"EnableAllAsError-

Default: "UseLocalSettings”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

+ Diagnosing Simulation Errors

* “Local and Global Data Stores”
* Data Store Memory block

+ Simulink.Signal object

* Diagnostics Pane: Data Validity

1-282

Diagnostics Pane: Data Validity

Multitask data store

Select the diagnostic action to take when one task reads data from a Data Store Memory
block to which another task writes data.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* Such a situation is safe only if one of the tasks cannot interrupt the other, such as
when the data store is a scalar and the writing task uses an atomic copy operation to
update the store or the target does not allow the tasks to preempt each other.

* You should disable this diagnostic (set it to none) only if the application warrants it,

such as if the application uses a cyclic scheduler that prevents tasks from preempting
each other.

Command-Line Information

Parameter: MultiTaskDSMMsg

Type: string

Value: "none® | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-283

1 Configuration Parameters Dialog Box

1-284

See Also

+ Diagnosing Simulation Errors

* “Local and Global Data Stores”
+ Data Store Memory block

+ Simulink.Signal object

* Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Duplicate data store names

Select the diagnostic action to take when the model contains multiple data stores that
have the same name. The data stores can be defined with Data Store Memory blocks or
Simulink.Signal objects.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tip
This diagnostic is useful for detecting errors that can occur when a lower-level data store

unexpectedly shadows a higher-level data store that has the same name.

Command-Line Information

Parameter: UniqueDataStoreMsg
Type: string

Value: "none® | "warning® | "error”
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Diagnosing Simulation Errors

1-285

1 Configuration Parameters Dialog Box

1-286

“Local and Global Data Stores”
Data Store Memory block
Simulink.Signal object
Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Detect multiple driving blocks executing at the same time step

Select the diagnostic action to take when the software detects a Merge block with more
than one driving block executing at the same time step.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* Connecting the inputs of a Merge block to multiple driving blocks that execute at the
same time step can lead to inconsistent results for both simulation and generated
code. Set Detect multiple driving blocks executing at the same time step to
error to avoid such situations.

+ If Underspecified initialization detection is set to Simplified, this parameter
is disabled, and Simulink software automatically uses the strictest setting (error) for
this diagnostic. Multiple driving blocks executing at the same time step always result
in an error.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information

Parameter: MergeDetectMultiDrivingBlocksExec
Type: string

Value: "none” | "warning® | "error*

Default: "error*

1-287

1 Configuration Parameters Dialog Box

1-288

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency No impact
Safety precaution error
See Also

Diagnosing Simulation Errors
Merge block

“Check usage of Merge blocks”
“Underspecified initialization detection” on page 1-289
Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Underspecified initialization detection

Select how Simulink software handles initialization of initial conditions for conditionally
executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time
Integrator blocks.

Settings
Default: Classic

Classic
Initial conditions are initialized the same way they were prior to R2008b.
Simplified
Initial conditions are initialized using the enhanced behavior, which can improve the
consistency of simulation results.

Tips

+ Use Classic to ensure compatibility with previous releases of Simulink. Use
Simplified to improve the consistency of simulation results, especially for models
that do not specify initial conditions for conditional subsystem output ports, and
for models that have conditionally executed subsystem output ports connected to
S-functions. For more information, see “Address Classic Mode Issues by Using
Simplified Mode”.

+ For existing models, MathWorks recommends using the Model Advisor to migrate
your model to the new settings. To migrate your model to simplified initialization
mode, run the following Model Advisor checks:

“Check bus usage”
+ “Check usage of Merge blocks”
* “Check usage of Outport blocks”
* “Check usage of Discrete-Time Integrator blocks”

“Check model settings for migration to simplified initialization mode”

For more information, see “Address Classic Mode Issues by Using Simplified Mode”.

* When using Simplified initialization mode, you must set “Bus signal treated as
vector” on page 1-331 to error on the Connectivity Diagnostics pane.

1-289

1 Configuration Parameters Dialog Box

1-290

Dependencies
Selecting Classic enables the following parameters:

* Detect multiple driving blocks executing at the same time step
* Check undefined subsystem initial output
* Check preactivation output of execution context

+ Check runtime output of execution context

Selecting Simplified disables these parameters, and automatically sets Detect
multiple driving blocks executing at the same time step to error.

Command-Line Information

Parameter: UnderspecifiedInitializationDetection
Type: string

Value: "Classic” | "Simplified”

Default: "Classic”

Recommended Settings

Application Setting
Debugging Simplified
Traceability Simplified
Efficiency Simplified
Safety precaution Simplified
See Also

+ “Conditional Subsystem Output Initialization”

+ “Migrating to Simplified Initialization Mode Overview”
* Merge block

+ Discrete-Time Integrator block

+ “Conditional Subsystems”

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Check undefined subsystem initial output

Specify whether to display a warning if the model contains a conditionally executed
subsystem in which a block with a specified initial condition drives an Outport block with
an undefined initial condition

Settings
Default: On

|7On

Displays a warning if the model contains a conditionally executed subsystem in
which a block with a specified initial condition drives an Outport block with an
undefined initial condition.

™ off

Does not display a warning.
Tips

+ This situation occurs when a block with a specified initial condition, such as a
Constant, Initial Condition, or Delay block, drives an Outport block with an undefined
initial condition (Initial output parameter is set to []).

* Models with such subsystems can produce initial results (i.e., before initial activation
of the conditionally executed subsystem) in the current release that differ from initial
results produced in Release 13 or earlier releases.

Consider for example the following model.

1-291

1 Configuration Parameters Dialog Box

|E| ex_check_undefined_subsys_initial_output P

|| *l_.D
Step

Scope

r

F

Ourti

Triggered SubsystEm

[*&| ex_check_undefined_subsys_initial_output b |[Pa| Triggered Subsystem

Trigger
s —D
Out1
Constant

This model does not define the initial condition of the triggered subsystem's output
port.

The following figure compares the superimposed output of this model's Step block and
the triggered subsystem in Release 13 and the current release.

1-292

Diagnostics Pane: Data Validity

Release 13 Current Release

Notice that the initial output of the triggered subsystem differs between the two
releases. This is because Release 13 and earlier releases use the initial output of

the block connected to the output port (i.e., the Constant block) as the triggered
subsystem's initial output. By contrast, this release outputs O as the initial output of
the triggered subsystem because the model does not specify the port's initial output.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information

Parameter: CheckSSInitialOutputMsg
Type: string

Value: "on” | "off"

Default: "on*

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

1-293

1 Configuration Parameters Dialog Box

1-294

Application Setting
Safety precaution On
See Also

Diagnosing Simulation Errors
“Conditional Subsystems”
“Underspecified initialization detection” on page 1-289

Diagnostics Pane: Data Validity

Diagnostics Pane: Data Validity

Check preactivation output of execution context

Specify whether to display a warning if Simulink software detects potential initial output
differences from previous releases.

Settings
Default: Off

|7On

Displays a warning if Simulink software detects potential initial output differences
from previous releases.

I off

Does not display a warning.
Tips
* This diagnostic is triggered if the model contains a block that meets the following
conditions:
The block produces nonzero output for zero input (e.g., a Cosine block).
* The block is connected to an output of a conditionally executed subsystem.

The block inherits its execution context from that subsystem.

+ The Outport to which it is connected has an undefined initial condition, i.e., the
Outport block's Initial output parameter is set to [].

* Models with blocks that meet these criteria can produce initial results (i.e., before the
conditionally executed subsystem is first activated in the current release that differ
from initial results produced in Release 13 or earlier releases.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information

Parameter: CheckExecutionContextPreStartOutputMsg
Type: string

Value: "on® | "off"

Default: "on*

1-295

1 Configuration Parameters Dialog Box

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution On
See Also

Diagnosing Simulation Errors

“Underspecified initialization detection” on page 1-289
* Diagnostics Pane: Data Validity

1-296

Diagnostics Pane: Data Validity

Check runtime output of execution context

Specify whether to display a warning if Simulink software detects potential output
differences from previous releases.

Settings
Default: Off

|7On

Displays a warning if Simulink software detects potential output differences from
previous releases.

ot
Does not display a warning.
Tips
* This diagnostic is triggered if the model contains a block that meets the following
conditions:
+ The block has a tunable parameter.
+ The block is connected to an output of a conditionally executed subsystem.

The block inherits its execution context from that subsystem.

The Outport to which it is connected has an undefined initial condition, i.e., the
Outport block's Initial output parameter is set to [].

* Models with blocks that meet these criteria can produce results when the parameter
is tuned in the current release that differ from results produced in Release 13 or
earlier releases.

Consider for example the following model.

1-297

1 Configuration Parameters Dialog Box

ik

Puks e Gens stor

T
]

Scope

r

i1

Out] p——p

Enabled Subsystem Gain

@—b tunevar

S-Function

In this model, the tunevar S-function changes the value of the Gain block's k
parameter and updates the diagram at simulation time 7 (i.e., it simulates tuning the
parameter).

The following figure compares the superimposed output of the model's Pulse
Generator block and its Gain block in Release 13 and the current release.

1-298

Diagnostics Pane: Data Validity

Release 13 Current Release

Note that the output of the Gain block changes at time 7 in Release 13 but does not
change in the current release. This is because in Release 13, the Gain block belongs
to the execution context of the root system and hence executes at every time step
whereas in the current release, the Gain block belongs to the execution context of the

triggered subsystem and hence executes only when the triggered subsystem executes,
l.e., at times 5, 10, 15, and 20.

Dependency

This parameter is enabled only if Underspecified initialization detection is set to
Classic.

Command-Line Information

Parameter: CheckExecutionContextRuntimeOutputMsg
Type: string

Value: "on" | "off"

Default: "on*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-299

1 Configuration Parameters Dialog Box

Application Setting
Efficiency No impact
Safety precaution On
See Also

Diagnosing Simulation Errors

“Underspecified initialization detection” on page 1-289
Diagnostics Pane: Data Validity

1-300

Diagnostics Pane: Data Validity

Array bounds exceeded

Select the diagnostic action to take when blocks write data to locations outside the
memory allocated to them.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ Use this option to check whether execution of each instance of a block during model
simulation writes data to memory locations not allocated to the block. This can
happen only if your model includes a user-written S-function that has a bug.

* Enabling this option slows down model execution considerably. Thus, you should
enable it only if you suspect that your model contains a user-written S-function that
has a bug.

* This option causes Simulink software to check whether a block writes outside the
memory allocated to it during simulation. Typically this can happen only if your
model includes a user-written S-function that has a bug.

+ See Checking Array Bounds in “Error Handling” for more information on using this
option.

* For models referenced in Accelerator mode, Simulink ignores the Array bounds
exceeded parameter setting if you set it to a value other than None.

You can use the Model Advisor to identify referenced models for which Simulink
changes configuration parameter settings during accelerated simulation.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.

1-301

1 Configuration Parameters Dialog Box

3 Run the Check diagnostic settings ignored during accelerated model
reference simulation check.

Command-Line Information

Parameter: ArrayBoundsChecking
Type: string

Value: "none” | "warning” | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency none
Safety precaution No impact
See Also

+ Diagnosing Simulation Errors
* Writing S-Functions

* Diagnostics Pane: Data Validity

1-302

Diagnostics Pane: Data Validity

Model Verification block enabling

Enable model verification blocks in the current model either globally or locally.
Settings
Default: Use local settings

Use local settings

Enables or disables blocks based on the value of the Enable assertion parameter
of each block. If a block's Enable assertion parameter is on, the block is enabled;
otherwise, the block is disabled.

Enable All

Enables all model verification blocks in the model regardless of the settings of their
Enable assertion parameters.

Disable All

Disables all model verification blocks in the model regardless of the settings of their
Enable assertion parameters.

Dependency

Simulation and code generation ignore the Model Verification block enabling
parameter when model verification blocks are inside a S-function.

Command-Line Information

Parameter: AssertControl

Type: string

Value: "UseLocalSettings” | "EnableAll" | "DisableAll*
Default: "UseLocalSettings”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Disable all

1-303

1 Configuration Parameters Dialog Box

See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Data Validity

1-304

Diagnostics Pane: Type Conversion

Diagnostics Pane: Type Conversion

— Iype Conversion

Unnecessary type conversions: Inu:une

Viector fmatrix block input conversion: Inu:une

32-bit integer to single predsion float conversion: Iwarning

Ll LedLe

Fixed-point Constants
Detect underflow: Inu:une ;l Detect overflow: |none LI
Detect precision loss: Inu:une ;I

In this section...

“Type Conversion Diagnostics Overview” on page 1-306
“Unnecessary type conversions” on page 1-307

“Vector/matrix block input conversion” on page 1-308

“32-bit integer to single precision float conversion” on page 1-310
“Detect underflow” on page 1-311

“Detect precision loss” on page 1-313

“Detect overflow” on page 1-315

1-305

1 Configuration Parameters Dialog Box

1-306

Type Conversion Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a data
type conversion problem while compiling the model.

Configuration

Set the parameters displayed.

Tips

* To open the Type Conversion pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Diagnostics > Type Conversion.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

* Diagnosing Simulation Errors
* Solver Diagnostics

* Sample Time Diagnostics

* Data Validity Diagnostics

+ Connectivity Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics
+ Saving Diagnostics

* Diagnostics Pane: Type Conversion

Diagnostics Pane: Type Conversion

Unnecessary type conversions

Select the diagnostic action to take when Simulink software detects a Data Type

Conversion block used where no type conversion is necessary.

Settings
Default: none

none
Simulink software takes no action.
warning

Simulink software displays a warning.

Command-Line Information

Parameter: UnnecessaryDatatypeConvMsg
Type: string

Value: "none*® | "warning”

Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning
See Also

* Diagnosing Simulation Errors
+ Data Type Conversion block

+ Diagnostics Pane: Type Conversion

1-307

1 Configuration Parameters Dialog Box

Vector/matrix block input conversion

Select the diagnostic action to take when Simulink software detects a vector-to-matrix or
matrix-to-vector conversion at a block input.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

Simulink software converts vectors to row or column matrices and row or column
matrices to vectors under the following circumstances:

+ If a vector signal is connected to an input that requires a matrix, Simulink software
converts the vector to a one-row or one-column matrix.

+ If a one-column or one-row matrix is connected to an input that requires a vector,
Simulink software converts the matrix to a vector.

+ If the inputs to a block consist of a mixture of vectors and matrices and the matrix
inputs all have one column or one row, Simulink software converts the vectors to
matrices having one column or one row, respectively.

Command-Line Information

Parameter: VectorMatrixConversionMsg
Type: string

Value: "none® | "warning® | "error”
Default: "none*®

Recommended Settings

Application Setting
Debugging No impact

1-308

Diagnostics Pane: Type Conversion

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution error

See Also

* Diagnosing Simulation Errors
* Determining Output Signal Dimensions

Diagnostics Pane: Type Conversion

1-309

1 Configuration Parameters Dialog Box

1-310

32-bit integer to single precision float conversion

Select the diagnostic action to take if Simulink software detects a 32-bit integer value
was converted to a floating-point value.

Settings
Default: warning
none

Simulink software takes no action.
warning

Simulink software displays a warning.
Tip

Converting a 32-bit integer value to a floating-point value can result in a loss of
precision. See Working with Data Types for more information.

Command-Line Information
Parameter: Int32ToFloatConvMsg
Type: string

Value: "none” | "warning*®
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution warning
See Also

+ Diagnosing Simulation Errors
* Working with Data Types

* Diagnostics Pane: Type Conversion

Diagnostics Pane: Type Conversion

Detect underflow

Specifies diagnostic action to take when a fixed-point constant underflow occurs during
simulation.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

+ This diagnostic applies only to fixed-point constants (net slope and net bias).

* Fixed-point constant underflow occurs when Simulink software encounters a fixed-
point constant whose data type does not have enough precision to represent the ideal
value of the constant because the ideal value is too small.

* When fixed-point constant underflow occurs, casting the ideal value to the data type
causes the value of the fixed-point constant to become zero, and therefore to differ
from its ideal value.

Dependency
This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstUnderflowMsg
Type: string

Value: "none” | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact

1-311

1 Configuration Parameters Dialog Box

Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Net Slope and Net Bias Precision Issues

Diagnostics Pane: Type Conversion

1-312

Diagnostics Pane: Type Conversion

Detect precision loss

Specifies diagnostic action to take when a fixed-point constant precision loss occurs
during simulation.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips
+ This diagnostic applies only to fixed-point constants (net slope and net bias).

* Precision loss occurs when Simulink software converts a fixed-point constant to a
data type which does not have enough precision to represent the exact value of the
constant. As a result, the quantized value differs from the ideal value.

+ Fixed-point constant precision loss differs from fixed-point constant overflow.
Overflow occurs when the range of the parameter's data type, that is, the maximum
value that it can represent, is smaller than the ideal value of the parameter.

Dependency
This parameter requires a Fixed-Point Designer license.

Command-Line Information
Parameter:FixptConstPrecisionLossMsg
Type: string

Value: "none” | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact

1-313

1 Configuration Parameters Dialog Box

Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Net Slope and Net Bias Precision Issues

Diagnostics Pane: Type Conversion

1-314

Diagnostics Pane: Type Conversion

Detect overflow

Specifies diagnostic action to take when a fixed-point constant overflow occurs during
simulation.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* This diagnostic applies only to fixed-point constants (net slope and net bias).

* Overflow occurs when the Simulink software converts a fixed-point constant to a data
type whose range is not large enough to accommodate the ideal value of the constant.
The ideal value is either too large or too small to be represented by the data type. For
example, suppose that the ideal value is 200 and the converted data type is int8.
Overflow occurs in this case because the maximum value that Int8 can represent is
127.

+ Fixed-point constant overflow differs from fixed-point constant precision loss.
Precision loss occurs when the ideal fixed-point constant value is within the range of
the data type and scaling being used, but cannot be represented exactly.

Dependency

This parameter requires a Fixed-Point Designer license.
Command-Line Information
Parameter:FixptConstOverflowMsg

Type: string

Value: "none® | "warning® | "error*
Default: "none*

1-315

1 Configuration Parameters Dialog Box

1-316

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No impact

* Net Slope and Net Bias Precision Issues

+ Diagnostics Pane: Type Conversion

Diagnostics Pane: Connectivity

Diagnostics Pane: Connectivity

o Configuration Parameters: untitled/Configuration (Active) EI@
Category| -
Select: Connectivity
Solver Signals
Data Import/Export
> Optimization Signal label mismatch: [none -]
4 Diagnostics . [']
Sample Time unconnected block input ports: |warning
Data Validity Unconnected block output ports: [warning -]
Type Conversion =
CITEETTR unconnected ne: — 5
Compatibility
Model Referencing Buses
Saving
Stateflow Unspecified bus object at root Outport block: [warning ']
Hardware Implementation
Model Referencing Element name mismatch: Iwaming ']
 Simulation Tar.'get Mux blocks used to create bus signals: [error ']
> Code Generation
» HDL Code Generation Bus signal treated as vector: [none '] M
Nen-bus signals treated as bus signals: Iﬂone ']
Repair bus selections: Iwarn and repair ']
Function calls
Invalid function-call connection: [error ']
Context-dependent inputs: [Enable all as errors ']
(9] oK] [Cancel] [Help Apply

In this section...

“Connectivity Diagnostics Overview” on page 1-319

“Signal label mismatch” on page 1-320

“Unconnected block input ports” on page 1-321
“Unconnected block output ports” on page 1-322
“Unconnected line” on page 1-323

“Unspecified bus object at root Outport block” on page 1-324

“Element name mismatch” on page 1-326

“Mux blocks used to create bus signals” on page 1-328

1-317

1 Configuration Parameters Dialog Box

1-318

In this section...

“Bus signal treated as vector” on page 1-331

“Non-bus signals treated as bus signals” on page 1-334
“Repair bus selections” on page 1-336

“Invalid function-call connection” on page 1-338

“Context-dependent inputs” on page 1-340

Diagnostics Pane: Connectivity

Connectivity Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects a
problem with block connections while compiling the model.

Configuration

Set the parameters displayed.

Tips

* To open the Connectivity pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Connectivity.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

* Diagnosing Simulation Errors
* Solver Diagnostics

* Sample Time Diagnostics

* Data Validity Diagnostics

* Type Conversion Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics
+ Saving Diagnostics

+ Diagnostics Pane: Connectivity

1-319

1 Configuration Parameters Dialog Box

1-320

Signal label mismatch

Select the diagnostic action to take when different names are used for the same signal
as that signal propagates through blocks in a model. This diagnostic does not check for
signal label mismatches on a virtual bus signal.

Settings
Default: none

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.
Command-Line Information
Parameter: SignallLabelMismatchMsg
Type: string

Value: "none” | "warning” | "error”
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

+ “Signal Names and Labels ”
* Diagnosing Simulation Errors

* Diagnostics Pane: Connectivity

Diagnostics Pane: Connectivity

Unconnected block input ports

Select the diagnostic action to take when the model contains a block with an unconnected

input.
Settings
Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedlnputMsg

Type: string
Value: "none” |
Default: "warning”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* Diagnosing Simulation Errors

* Diagnostics Pane: Connectivity

"warning® | "error-”

Setting
No impact
No impact
No impact
error

1-321

1 Configuration Parameters Dialog Box

Unconnected block output ports

Select the diagnostic action to take when the model contains a block with an unconnected
output.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedOutputMsg
Type: string

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

* Diagnosing Simulation Errors

* Diagnostics Pane: Connectivity

1-322

Diagnostics Pane: Connectivity

Unconnected line

Select the diagnostic action to take when the Model contains an unconnected line or an

unmatched Goto or From block.
Settings
Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Command-Line Information

Parameter: UnconnectedLineMsg

Type: string
Value: "none” |
Default: "warning”

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* Diagnosing Simulation Errors
* Goto block
* From block

* Diagnostics Pane: Connectivity

"warning® | "error-”

Setting
No impact
No impact
No impact
error

1-323

1 Configuration Parameters Dialog Box

1-324

Unspecified bus object at root Outport block

Select the diagnostic action to take while generating a simulation target for a referenced
model if any of the model's root Outport blocks is connected to a bus but does not specify
a bus object (see Simulink.Bus).

Settings
Default: warning

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.
Command-Line Information
Parameter: RootOutportRequireBusObject
Type: string

Value: "none® | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

* Diagnosing Simulation Errors
* Outport block
* Simulink.Bus

* Diagnostics Pane: Connectivity

Diagnostics Pane: Connectivity

1-325

1 Configuration Parameters Dialog Box

Element name mismatch

Select the diagnostic action to take if the name of a bus element does not match the name
specified by the corresponding bus object.

Settings
Default: warning

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.
Tips
* You can use this diagnostic along with bus objects to ensure that your model meets

bus element naming requirements imposed by some blocks, such as the Switch block.

* In a Bus Creator block, you can enforce strong data typing:

1 For the Output data type, use a bus object.

2 Clear Override bus signal names from inputs.

Command-Line Information

Parameter: BusObjectLabelMismatch
Type: string

Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

1-326

Diagnostics Pane: Connectivity

See Also

+ Diagnosing Simulation Errors

* Diagnostics Pane: Connectivity

1-327

1 Configuration Parameters Dialog Box

1-328

Mux blocks used to create bus signals

Select the diagnostic action to take if Simulink detects a Mux block that creates a virtual
bus.

Settings

Default: error

none

Simulink software takes no action.

This option disables checking for Mux blocks used to create virtual bus signals.

warning

Simulink software displays a warning.

With this option, if Simulink detects a Mux block that creates a virtual bus during
model update or simulation, it displays a message in the MATLAB Command
Window that identifies the offending block. It does this for the first ten Mux block
signals that it encounters that are treated as virtual buses.

error

Simulink terminates the simulation and displays an error message identifying the
first Mux block it encounters that is used to create a virtual bus. If this option is
selected, a Mux block with more than one input is allowed to output only a vector
signal, and a Mux block with only one input is allowed to output only a scalar, vector,
or matrix signal.

Tips

This diagnostic detects use of Mux blocks to create virtual buses. The diagnostic
considers a signal created by a Mux block to be a virtual bus if the signal meets either
or both of the following conditions:

* A Bus Selector block individually selects one or more of the signal elements (as
opposed to the entire signal).

+ The signal components have differing data types, numeric types (complex or real),
dimensionality, or sampling modes (see the DSP System Toolbox™ documentation
for information on frame-based sampling).

If you are using simplified initialization mode, you must set this diagnostic to error.
For more information, see Underspecified initialization detection.

Diagnostics Pane: Connectivity

* You can identify Mux blocks used to create virtual buses using the Model Advisor
Check bus usage check. For more information, see “Check bus usage”.

* See “Prevent Bus and Mux Mixtures” for more information.

Dependency

Selecting error enables the following parameter:

* Bus signal treated as vector

Command-Line Information
Parameter: StrictBusMsg

Type: string

Value: "none” | "warning” | "ErrorLevell” | "WarnOnBusTreatedAsVector" |
"ErrorOnBusTreatedAsVector”
Default: "ErrorLevell”

Due to the requirement that Mux blocks used to create bus signals be error before
Bus signal treated as vector is enabled, one parameter, StrictBusMsg, can specify
all permutations of the two controls. The parameter can have one of five values. The
following table shows these values and the equivalent GUI control settings:

Value of StrictBusMsg (API) |Mux blocks used to create bus Bus signal treated as vector (GUI)
signals (GUI)

None none none

Warning warning none

ErrorLevell error none

WarnOnBusTreatedAsVector |error warning

ErrorOnBusTreatedAsVectorerror error

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

error

1-329

1 Configuration Parameters Dialog Box

1-330

See Also

“Prevent Bus and Mux Mixtures”
Diagnosing Simulation Errors

Mux block

Bus Creator block

Bus Selector block

Underspecified initialization detection
“Check bus usage”

Diagnostics Pane: Connectivity

Diagnostics Pane: Connectivity

Bus signal treated as vector

Select the diagnostic action to take when Simulink software detects a virtual bus signal
that is used as a mux signal.

Settings
Default: warning

none
Disables checking for virtual buses used as muxes.
warning

Simulink software displays a warning if it detects a virtual bus used as a mux. This
option does not enforce strict bus behavior.

error

Simulink software terminates the simulation and displays an error message when it
builds a model that uses any virtual bus as a mux.

Tips

+ This diagnostic detects the use of virtual bus signals used to specify muxes. The
diagnostic considers a virtual bus signal to be used as a mux if it is input to a Demux
block or to any block that can input a mux or a vector but is not formally defined as
bus-capable. See Bus-Capable Blocks for details.

* Virtual buses can be used as muxes only when they contain no nested buses and all
constituent signals have the same attributes. This practice is deprecated as of R2007a
(V6.6) and may cease to be supported at some future time. MathWorks, therefore,
discourages mixing virtual buses with muxes in new applications, and encourages
upgrading existing applications to avoid such mixtures.

+ If you are using simplified initialization mode, you must set this diagnostic to error.
For more information, see Underspecified initialization detection.

* You can identify bus signals that are treated as a vectors using the Model Advisor
Check bus usage check. For more information, see “Check bus usage”.

+ See “Prevent Bus and Mux Mixtures” for more information.
Dependency

This parameter is enabled only when Mux blocks used to create bus signals is set to
error.

1-331

1 Configuration Parameters Dialog Box

Command-Line Information
Parameter: StrictBusMsg

Type: string
Value: "none

warning

"ErrorOnBusTreatedAsVector”

Default: "warning”

ErrorLevell® | "WarnOnBusTreatedAsVector” |

Due to the requirement that Mux blocks used to create bus signals be error before
Bus signal treated as vector is enabled, one parameter, StrictBusMsg, can specify
all permutations of the two controls. The parameter can have one of five values. The
following table shows these values and the equivalent GUI control settings:

Value of StrictBusMsg (API)

Mux blocks used to create bus
signals (GUI)

Bus signal treated as vector (GUI)

None

none none
Warning warning none
ErrorLevell error none
WarnOnBusTreatedAsVector |error warning
ErrorOnBusTreatedAsVectorerror error

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

error

* Avoiding Mux/Bus Mixtures
* Diagnosing Simulation Errors
* Bus-Capable Blocks

*+ Demux block

* Bus to Vector block

* Underspecified initialization detection

1-332

Diagnostics Pane: Connectivity

* “Check bus usage”
* Simulink.BlockDiagram.addBusToVector

* Diagnostics Pane: Connectivity

1-333

1 Configuration Parameters Dialog Box

1-334

Non-bus signals treated as bus signals

Detect when Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block.

Settings
Default: none

none
Implicitly converts non-bus signals to bus signals to support connecting the signal to
a Bus Assignment or Bus Selector block.

warning
Simulink displays a warning, indicating that it has converted a non-bus signal to a
bus signal. The warning lists the non-bus signals that Simulink converts.

error

Simulink terminates the simulation without performing converting non-bus signals
to bus signals. The error message lists the non-bus signal that is being treated as a
bus signal.

Tips

* Using a Mux block to create a virtual bus does not support strong type checking and
increases the likelihood of runtime errors. In new applications, do not use Mux blocks
to create bus signals. Consider upgrading existing applications to that use of Mux
blocks.

Simulink generates a warning when you load a model created in a release prior to
R2010a, if that model contains a Mux block to create a bus signal. For new models,
Simulink generates an error.

+ See Avoiding Mux/Bus Mixtures for more information.
Dependency

This parameter is enabled only when Mux blocks used to create bus signals is set to
error.

Command-Line Information
Parameter: NonBusSignalsTreatedAsBus
Type: string

Diagnostics Pane: Connectivity

Value: "none® | "warning® | "error*
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

Avoiding Mux/Bus Mixtures

Diagnosing Simulation Errors
Bus-Capable Blocks

Demux block

Bus to Vector block
Simulink.BlockDiagram.addBusToVector

Diagnostics Pane: Connectivity

1-335

1 Configuration Parameters Dialog Box

1-336

Repair bus selections

Repair broken selections in the Bus Selector and Bus Assignment block parameter
dialogs due to upstream bus hierarchy changes.

Settings
Default: Warn and repair

Warn and repair

Simulink displays a warning, indicating the block parameters for Bus Selector and
Bus Assignment blocks that Simulink repaired to reflect upstream bus hierarchy
changes.

Error without repair
Simulink terminates the simulation and displays an error message indicating the
block parameters that you need to repair for Bus Selector and Bus Assignment blocks
to reflect upstream bus hierarchy changes.

Tips

* See Avoiding Mux/Bus Mixtures for more information.

Dependency

This parameter is enabled only when Mux blocks used to create bus signals is set to
error.

Command-Line Information

Parameter: BusNameAdapt

Type: string

Values: "WarnAndRepair® | "ErrorWithoutRepair*
Default: "WarnAndRepair"®

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact

Diagnostics Pane: Connectivity

Application Setting
Safety precaution Warn and repair
See Also

* Avoiding Mux/Bus Mixtures

+ “Nest Buses”

* Diagnosing Simulation Errors
* Bus-Capable Blocks

+ Diagnostics Pane: Connectivity

1-337

1 Configuration Parameters Dialog Box

1-338

Invalid function-call connection

Select the diagnostic action to take if Simulink software detects incorrect use of a
function-call subsystem.

Settings
Default: error

none
Simulink software takes no action.
warning
Simulink software displays a warning.
error
Simulink software terminates the simulation and displays an error message.
Tips
+ See the "Function-call subsystems" examples in the Simulink Subsystem Semantics
library for examples of invalid uses of function-call subsystems.
+ Setting this parameter to none or warning can lead to invalid simulation results.
+ Setting this parameter to none or warning may cause Simulink software to insert

extra delay operations.

Command-Line Information

Parameter: InvalidFcnCallConnMsg
Type: string

Value: "none® | "warning® | "error*
Default: "error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Diagnostics Pane: Connectivity

See Also

Diagnosing Simulation Errors

Subsystem Semantics library

Diagnostics Pane: Connectivity

1-339

1 Configuration Parameters Dialog Box

1-340

Context-dependent inputs

Select the diagnostic action to take when Simulink software has to compute any of a
function-call subsystem's inputs directly or indirectly during execution of a call to a
function-call subsystem.

Settings
Default: Enable all as errors

Enable all as errors

Enables this diagnostic for all function-call subsystems in this model. Issues an error
for context-dependent inputs.

Enable all as warnings

Enables this diagnostic for all function-call subsystems in this model. Issues a
warning for context-dependent inputs.

Use local settings

Issues a warning only if the corresponding diagnostic is selected on the function-call
subsystem's parameters dialog box (see the documentation for the Subsystem block's
parameter dialog box for more information).

Disable all

Disables this diagnostic for all function-call subsystems in this model.
Tips

+ This situation occurs when executing a function-call subsystem can change its inputs.

* For examples of function-call subsystems, see the "Function-call systems" examples in
the Simulink "Subsystem Semantics" library).

+ To fix an error or warning generated by this diagnostic, use one of these approaches:
* For the Inport block inside of the function-call subsystem, enable the Latch input
for feedback signals of function-call subsystem outputs parameter.
+ Place a Function-Call Feedback Latch block on the feedback signal.

For examples of using these approaches, open the sl_subsys_fencallerr12 model and
press the more info button.

Command-Line Information
Parameter: FcnCalllnplnsideContextMsg

Diagnostics Pane: Connectivity

Type: string

Value: "EnableAllAsError® | "EnableAllAsWarning”® | "UseLocalSettings” |
"DisableAll”

Default: "EnableAllAsError”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Enable all as errors
See Also

* “Create a Function-Call Subsystem”

“Pass fixed-size scalar root inputs by value for code generation” on page 1-523
* Subsystem Semantics library

* Subsystem block

* Diagnosing Simulation Errors

+ Diagnostics Pane: Connectivity

1-341

1 Configuration Parameters Dialog Box

Diagnostics Pane: Compatibility

Compatibility

S-function upgrades needed: [none

Block behavior depends on frame status of signal: lwarning

In this section...

“Compatibility Diagnostics Overview” on page 1-343
“S-function upgrades needed” on page 1-344

“Block behavior depends on frame status of signal” on page 1-345

1-342

Diagnostics Pane: Compatibility

Compatibility Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an
incompatibility between the current version of Simulink software and the model.

Configuration

Set the parameters displayed.

Tips

* To open the Compatibility pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Compatibility.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

* Diagnosing Simulation Errors
* Solver Diagnostics

* Sample Time Diagnostics

* Data Validity Diagnostics

* Type Conversion Diagnostics

* Connectivity Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics
* Saving Diagnostics

* Diagnostics Pane: Compatibility

1-343

1 Configuration Parameters Dialog Box

S-function upgrades needed

Select the diagnostic action to take if Simulink software encounters a block that has not
been upgraded to use features of the current release.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.

Command-Line Information
Parameter:SFcnCompatibilityMsg
Type: string
Value: "none
Default: "none*”

warning® | “"error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error
See Also

* Diagnosing Simulation Errors

* Diagnostics Pane: Compatibility

1-344

Diagnostics Pane: Compatibility

Block behavior depends on frame status of signal

Select the diagnostic action to take when Simulink software encounters a block whose
behavior depends on the frame status of a signal.

In future releases, frame status will no longer be a signal attribute. To prepare for this
change, many blocks received a new parameter. This parameter allows you to specify
whether the block treats its input as frames of data or as samples of data. Setting this
parameter prepares your model for future releases by moving control of sample- and
frame-based processing from the frame status of the signal to the block.

This diagnostic helps you identify whether any of the blocks in your model relies on the
frame status of a signal. By knowing this status, you can determine whether the block
performs sample- or frame-based processing. For more information, see the R2012a DSP
System Toolbox Release Notes section about frame-based processing.

Note: Frame-based processing requires a DSP System Toolbox license.

Settings
Default: warning

none
Simulink software takes no action.
warning

If your model contains any blocks whose behavior depends on the frame status of a
signal, Simulink software displays a warning.

error

If your model contains any blocks whose behavior depends on the frame status of a
signal, Simulink software terminates the simulation and displays an error message.

Tips

* Use the Upgrade Advisor to automatically update the blocks in your model. See
“Model Upgrades”.

Command-Line Information
Parameter: FrameProcessingCompatibilityMsg

1-345

1 Configuration Parameters Dialog Box

1-346

Type: string
Value: "none*® | "warning” | "error*
Default: "warning”

Recommended Settings

Application

Debugging

Traceability

Efficiency

Safety precaution

See Also

Setting

No impact
No impact
No impact

No impact

“Sample- and Frame-Based Concepts”

Diagnosing Simulation Errors

Diagnostics Pane: Compatibility

Diagnostics Pane: Model Referencing

Diagnostics Pane: Model Referencing

Model Referencing

Model block version mismatch: ’none ']
Port and parameter mismatch: ’none 'l
Invalid root Inport/Outport block connection: ’none 'l
Unsupported data logging: ’warning 'l

In this section...

“Model Referencing Diagnostics Overview” on page 1-348
“Model block version mismatch” on page 1-349
“Port and parameter mismatch” on page 1-351

“Invalid root Inport/Outport block connection” on page 1-353

“Unsupported data logging” on page 1-358

1-347

1 Configuration Parameters Dialog Box

Model Referencing Diagnostics Overview

Specify the diagnostic actions that Simulink software should take when it detects an
incompatibility relating to a model reference hierarchy.

Configuration
Set the parameters displayed.
Tips

* To open the Diagnostics: Model Referencing pane, in the Simulink Editor, select
Simulation > Model Configuration Parameters > Diagnostics > Model
Referencing.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

+ Referencing Models

+ Diagnosing Simulation Errors
* Solver Diagnostics

* Sample Time Diagnostics

* Data Validity Diagnostics

+ Type Conversion Diagnostics
* Connectivity Diagnostics

+ Compatibility Diagnostics

* Saving Diagnostics

+ Diagnostics Pane: Model Referencing

1-348

Diagnostics Pane: Model Referencing

Model block version mismatch

Select the diagnostic action to take when loading or updating this model if Simulink
software detects a mismatch between the version of the model used to create or refresh a
Model block in this model and the referenced model's current version.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning and refreshes the Model block.
error

Simulink software displays an error message and does not refresh Model block.
Tip

If you have enabled display of referenced model version numbers on Model blocks for this
model (see Displaying Referenced Model Version Numbers), Simulink software displays a
version mismatch on the Model block icon, for example: Rev:1.0 1= 1.2,

Command-Line Information

Parameter: ModelReferenceVersionMismatchMessage
Type: string

Value: "none® | "warning® | "error*

Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution none

See Also

* Referencing Models

1-349

1 Configuration Parameters Dialog Box

* Diagnosing Simulation Errors
+ Displaying Referenced Model Version Numbers

+ Diagnostics Pane: Model Referencing

1-350

Diagnostics Pane: Model Referencing

Port and parameter mismatch

Select the diagnostic action to take if Simulink software detects a port or parameter
mismatch during model loading or updating.

Settings
Default: none

none

Simulink software takes no action.
warning

Simulink software displays a warning and refreshes the Model block.
error

Simulink software displays an error message and does not refresh the Model block.
Tips

* Port mismatches occur when there is a mismatch between the I/0 ports of a Model
block and the root-level I/O ports of the model it references.

* Parameter mismatches occur when there is a mismatch between the parameter
arguments recognized by the Model block and the parameter arguments declared by
the referenced model.

* Model block icons can display a message indicating port or parameter mismatches.
To enable this feature, from the parent model's Simulink Editor, select Display >
Blocks > Block I/0O Mismatch for Referenced Models.

Command-Line Information

Parameter: ModelReferencelOMismatchMessage
Type: string
Value: "none
Default: "none*

warning® | “"error*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-351

1 Configuration Parameters Dialog Box

Efficiency No impact
Safety precaution error
See Also

+ Referencing Models

Diagnosing Simulation Errors

+ Diagnostics Pane: Model Referencing

1-352

Diagnostics Pane: Model Referencing

Invalid root Inport/Ovutport block connection

Select the diagnostic action to take if Simulink software detects invalid internal
connections to this model's root-level Output port blocks.

Settings
Default: none

none

Simulink software silently inserts hidden blocks to satisfy the constraints wherever
possible.

warning

Simulink software warns you that a connection constraint has been violated and
attempts to satisfy the constraint by inserting hidden blocks.

error

Simulink software terminates the simulation or code generation and displays an
error message.

Tips
* In some cases (such as function-call feedback loops), automatically inserted hidden

blocks may introduce delays and thus may change simulation results.

+ Auto-inserting hidden blocks to eliminate root I/O problems stops at subsystem
boundaries. Therefore, you may need to manually modify models with subsystems
that violate any of the constraints below.

* The types of invalid internal connections are:

* A root Output port is connected directly or indirectly to more than one nonvirtual
block port:

1-353

1 Configuration Parameters Dialog Box

Zain
1
Ot 1

* A root Output port is connected to a Ground block:

Ground Cut1

Two root Outport blocks are connected to the same block port:

O 1

In1 Out1

—_—_
Out2

+ An Outport block is connected to some elements of a block output and not others:

? Ot

Zain

1-354

Diagnostics Pane: Model Referencing

* An Outport block is connected more than once to the same element:

i

Gain o

* The signal driving the root outport is a test point:

The output port has a constant sample time, but the driving block has a non-constant
sample time:

1
Constant?

+

ol —»(2)
Out2

Subsystem

The driving block has a constant sample time and multiple output ports, and one of
the other output ports of the block is a test point.

1-355

1 Configuration Parameters Dialog Box

1-356

Gain
- lul :
1 g R (2)
Constant EEHTIFHEKtE Owths
Magnitude-Angle

The root output port is conditionally computed, you are using Function Prototype
Control or a Encapsulated C++ target, and the Function Prototype specification or
C++ target specification states that the output variable corresponding to that root
outport is returned by value.

n
Outt —I-

Enabled Subsystem

Command-Line Information

Parameter: ModelReferencelOMsg
Type: string

Value: "none® | "warning® | "error-
Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Diagnostics Pane: Model Referencing

Efficiency No impact
Safety precaution error
See Also

+ Referencing Models

Diagnosing Simulation Errors

+ Diagnostics Pane: Model Referencing

1-357

1 Configuration Parameters Dialog Box

1-358

Unsupported data logging

Select the diagnostic action to take if this model contains To Workspace blocks or Scope
blocks with data logging enabled.

Settings
Default: warning

none

Simulink software takes no action.
warning

Simulink software displays a warning.
error

Simulink software terminates the simulation and displays an error message.
Tips

* The default action warns you that Simulink software does not support use of these
blocks to log data from referenced models.

+ See “Models with Model Referencing: Overriding Signal Logging Settings” for
information on how to log signals from a reference to this model.

Command-Line Information

Parameter: ModelReferenceDataloggingMessage
Type: string

Value: "none® | "warning® | "error-

Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution error

Diagnostics Pane: Model Referencing

See Also

* Referencing Models

* Diagnosing Simulation Errors

“Models with Model Referencing: Overriding Signal Logging Settings”
* To Workspace block

* Scope block

+ Diagnostics Pane: Model Referencing

1-359

1 Configuration Parameters Dialog Box

Diagnostics Pane: Saving

S aving

Black diagram contains dizabled library linkz: Iwarning

Block diagram containg parameternized librany linkz: Iwarning

Lol Le]

In this section...

“Saving Tab Overview” on page 1-361
“Block diagram contains disabled library links” on page 1-362

“Block diagram contains parameterized library links” on page 1-364

1-360

Diagnostics Pane: Saving

Saving Tab Overview

Specify the diagnostic actions that Simulink software takes when saving a block diagram
containing disabled library links or parameterized library links.

Configuration

Set the parameters displayed.

Tips

* To open the Saving pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Saving.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

* Saving a Model

* Model Parameters

* Diagnosing Simulation Errors
* Solver Diagnostics

+ Sample Time Diagnostics

+ Data Validity Diagnostics

* Type Conversion Diagnostics

+ Connectivity Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics

+ Diagnostics Pane: Saving

1-361

1 Configuration Parameters Dialog Box

1-362

Block diagram contains disabled library links

Select the diagnostic action to take when saving a model containing disabled library
links.

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram
may not contain the information you had intended.

error

Simulink software displays an error message. The model is not saved.
Tip
Use the Model Advisor Identify disabled library links check to find disabled
library links.

Command-Line Information

Parameter: SaveWithDisabledLinksMsg
Type: string

Value: "none® | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Disabling Library Links

Diagnostics Pane: Saving

Identify disabled library links
Saving a Model
Model Parameters

Diagnostics Pane: Saving

1-363

1 Configuration Parameters Dialog Box

1-364

Block diagram contains parameterized library links

Select the diagnostic action to take when saving a model containing parameterized
library links.

Settings
Default: warning

none
Simulink software takes no action.
warning

Simulink software displays a warning and saves the block diagram. The diagram
may not contain the in formation you had intended.

error

Simulink software displays an error message. The model is not saved.
Tips
+ Use the Model Advisor Identify parameterized library links check to find

parameterized library links.

Command-Line Information

Parameter: SaveWithParameterizedLinksMsg
Type: string

Value: "none” | "warning® | "error*

Default: "none*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Identify parameterized library links

Diagnostics Pane: Saving

* Diagnostics Pane: Saving

1-365

1 Configuration Parameters Dialog Box

Diagnostics Pane: Stateflow

1-366

Stateflow

Unused data, events and messages: ’warning ']
Unexpected backtracking: [warning ']
Invalid input data access in chart initialization: ’warning ']
Mo unconditional default transitions: ’warning ']
Transition outside natural parent: ’warning v]
Transition shadowing: ’warning v]
Undirected event broadcasts: ’warning ']

Transition action specified before condition action: ’warning

Read-before-write to output in Moore chart: [error

In this section...

“Stateflow Diagnostics Overview” on page 1-367

“Unused data, events and messages” on page 1-368

“Unexpected backtracking” on page 1-370

“Invalid input data access in chart initialization” on page 1-372
“No unconditional default transitions” on page 1-374

“Transition outside natural parent” on page 1-376

“Transition shadowing” on page 1-377

“Undirected event broadcasts” on page 1-378

“Transition action specified before condition action” on page 1-380

“Read-before-write to output in Moore chart” on page 1-382

Diagnostics Pane: Stateflow

Stateflow Diagnostics Overview

Specify the diagnostic actions to take for detection of undesirable chart designs.

Configuration

Set the parameters displayed.

Tips

+ To open the Stateflow pane, in the Simulink Editor, select Simulation > Model
Configuration Parameters > Diagnostics > Stateflow.

* The options are typically to do nothing or to display a warning or an error message.

* A warning does not terminate a simulation, but an error does.
See Also

* Saving a Model

* Model Parameters

* Diagnosing Simulation Errors
* Solver Diagnostics

+ Sample Time Diagnostics

+ Data Validity Diagnostics

* Type Conversion Diagnostics

+ Connectivity Diagnostics

* Compatibility Diagnostics

* Model Referencing Diagnostics

+ Saving Diagnostics

1-367

1 Configuration Parameters Dialog Box

Unused data, events and messages

Select the diagnostic action to take for detection of unused data, events, and messages
in a chart. Removing unused data, events, and messages can minimize the size of your
model.

Settings
Default: warning

none
No warning or error appears.
warning

A warning appears, with a link to delete the unused data, event, or message in your
chart.

error

An error appears and stops the simulation.
Tip
This diagnostic does not detect the following types of data and events:

* Machine-parented data
* Inputs and outputs of MATLAB functions

* Input events

Command-Line Information

Parameter: SFUnusedDataAndEventsDiag
Type: string

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

none (for production code generation)

1-368

Diagnostics Pane: Stateflow

Safety precaution warning

See Also

Stateflow Diagnostics

“Diagnostic for Detecting Unused Data”

“Diagnostic for Detecting Unused Events”

1-369

1 Configuration Parameters Dialog Box

Unexpected backiracking

Select the diagnostic action to take when a chart junction has both of the following
conditions. The junction:

* Does not have an unconditional transition path to a state or a terminal junction

* Has multiple transition paths leading to it

This chart configuration can lead to undesired backtracking during simulation.
Settings

Default: warning

none

No warning or error appears.
warning

A warning appears, with a link to examples of undesired backtracking.
error

An error appears and stops the simulation.
Tip

To avoid undesired backtracking, consider adding an unconditional transition from the
chart junction to a terminal junction.

Command-Line Information

Parameter: SFUnexpectedBacktrackingDiag
Type: string

Value: "none warning” | "error”
Default: "warning”

Recommended Settings

Application Setting

Debugging warning

Traceability No impact

Efficiency No impact (for simulation)

No impact (for production code generation)

1-370

Diagnostics Pane: Stateflow

Safety precaution error

See Also

Stateflow Diagnostics

“Best Practices for Creating Flow Charts”
+ “Backtrack in Flow Charts”

1-371

1 Configuration Parameters Dialog Box

1-372

Invalid input data access in chart initialization
Select the diagnostic action to take when a chart:

* Has the ExecuteAtlInitialization property set to true
+ Accesses input data on a default transition or associated state entry actions, which
execute at chart initialization

In this chart configuration, blocks that connect to chart input ports might not initialize
their outputs during initialization. Use this diagnostic to locate this configuration in your
model and correct it.

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.
Tip
In charts that do not contain states, the ExecuteAtInitialization property has no

effect.

Command-Line Information

Parameter: SFInvalidlnputDataAccessiInChartinitDiag
Type: string

Value: "none® | "warning® | "error”

Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact

Diagnostics Pane: Stateflow

Application Setting
Efficiency No impact (for simulation)
No impact (for production code generation)
Safety precaution error
See Also

+ Stateflow Diagnostics

+ “Execution of a Chart at Initialization”

1-373

1 Configuration Parameters Dialog Box

1-374

No unconditional default transitions

Select the diagnostic action to take when a chart does not have an unconditional default
transition to a state or a junction.

This chart configuration can cause inconsistency errors. Use this diagnostic to locate this
configuration in your model and correct it. If a chart contains local event broadcasts or
implicit events, detection of a state inconsistency might not be possible until run time.

Settings
Default: warning

none
No warning or error appears.
warning
A warning appears.
error
An error appears and stops the simulation.
Command-Line Information
Parameter: SFNoUnconditionalDefaultTransitionDiag
Type: string

Value: "none” | "warning® | "error*
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

+ Stateflow Diagnostics

Diagnostics Pane: Stateflow

+ “State Inconsistencies in a Chart”

1-375

1 Configuration Parameters Dialog Box

Transition outside natural parent

Select the diagnostic action to take when a chart contains a transition that loops outside
the parent state or junction.

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionOutsideNaturalParentDiag
Type: string

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

+ Stateflow Diagnostics

1-376

Diagnostics Pane: Stateflow

Transition shadowing

Select the diagnostic action to take when a chart contains multiple unconditional
transitions that originate from the same state or junction.

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUnconditionalTransitionShadowingDiag
Type: string

Value: "none” | "warning” | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency No impact (for simulation)
none (for production code generation)
Safety precaution error
See Also

+ Stateflow Diagnostics

+ “Detection of Transition Shadowing”

1-377

1 Configuration Parameters Dialog Box

1-378

Undirected event broadcasts

Select the diagnostic action to take when a chart contains undirected local event
broadcasts.

Undirected local event broadcasts can cause unwanted recursive behavior in a chart and
inefficient code generation. Use this diagnostic to flag these types of event broadcasts and
fix them.

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFUndirectedBroadcastEventsDiag
Type: string

Value: "none” | "warning® | "error”
Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability No impact
Efficiency warning
Safety precaution error
See Also

+ Stateflow Diagnostics

* “QGuidelines for Avoiding Unwanted Recursion in a Chart”

Diagnostics Pane: Stateflow

+ “Broadcast Events to Synchronize States”

1-379

1 Configuration Parameters Dialog Box

Transition action specified before condition action

Select the diagnostic action to take when a transition action executes before a condition
action in a transition path with multiple transition segments.

When a transition with a specified transition action precedes a transition with a specified
condition action in the same transition path, out-of-order execution can occur. Use this
diagnostic to flag such behavior in your chart and fix it.

Settings
Default: warning

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFTransitionActionBeforeConditionDiag
Type: string

Value: "none” | "warning® | "error*

Default: "warning”

Recommended Settings

Application Setting
Debugging warning
Traceability warning
Efficiency warning
Safety precaution warning
See Also

+ Stateflow Diagnostics

* “Transition Action Types”

1-380

Diagnostics Pane: Stateflow

* “Transitions”

1-381

1 Configuration Parameters Dialog Box

1-382

Read-before-write to output in Moore chart

Select the diagnostic action to take when a Moore chart uses a previous output value to
determine the current state. This behavior violates Moore machine semantics. In a Moore
machine, output is a function of current state only. Set this diagnostic to warning or
none to allow output values from the previous time step in calculating current state.

Settings
Default: error

none

No warning or error appears.
warning

A warning appears.
error

An error appears and stops the simulation.

Command-Line Information

Parameter: SFOutputUsedAsStateInMooreChartDiag
Type: string

Value: "none® | "warning® | "error*

Default: "error*

Recommended Settings

Application Setting
Debugging error
Traceability error
Efficiency error
Safety precaution error
See Also

+ Stateflow Diagnostics

* “Design Considerations for Moore Charts”

Hardware Implementation Pane

Hardware Implementation Pane

Hardware board: IArduino Pro 'I

Code Generation system target file: realtime.tlc

Device vendor: lAtmeI " Device type: IAVR hd

b Device details

Hardware board settings
Host-board connection
COM port number: 1
Overrun detection
[T Enable overrun detection

Arduino analog input channel properties

Analog input reference voltage: | Default "

Arduino serial port properties

Serial 0 baud rate: IQGUU "

In this section...

“Hardware Implementation Overview” on page 1-386
“Hardware board” on page 1-387

“Code Generation system target file” on page 1-389
“Device vendor” on page 1-390

“Device type” on page 1-392

“Device details” on page 1-404

“Number of bits: char” on page 1-405

“Number of bits: short” on page 1-407

“Number of bits: int” on page 1-409

“Number of bits: long” on page 1-411

“Number of bits: long long” on page 1-413
“Number of bits: float” on page 1-415

“Number of bits: double” on page 1-416

1-383

1 Configuration Parameters Dialog Box

In this section...

“Number of bits: native” on page 1-417

“Number of bits: pointer” on page 1-419

“Largest atomic size: integer” on page 1-420

“Largest atomic size: floating-point” on page 1-422

“Byte ordering” on page 1-424

“Signed integer division rounds to” on page 1-426

“Shift right on a signed integer as arithmetic shift” on page 1-428
“Support long long” on page 1-430

“Test hardware is the same as production hardware” on page 1-431
“Test device vendor and type” on page 1-433

“Device vendor” on page 1-445

“Device type” on page 1-447

“Number of bits: char” on page 1-459

“Number of bits: short” on page 1-461

“Number of bits: int” on page 1-463

“Number of bits: long” on page 1-465

“Number of bits: long long” on page 1-466

“Number of bits: float” on page 1-468

“Number of bits: double” on page 1-469

“Number of bits: native” on page 1-470

“Number of bits: pointer” on page 1-472

“Largest atomic size: integer” on page 1-473

“Largest atomic size: floating-point” on page 1-475

“Byte ordering” on page 1-477

“Signed integer division rounds to” on page 1-479

“Shift right on a signed integer as arithmetic shift” on page 1-481
“Support long long” on page 1-483

“Build action” on page 1-485

“Set host COM port” on page 1-486

1-384

Hardware Implementation Pane

In this section...

“Analog input reference voltage” on page 1-487

“Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud rate” on page
1-488

“SPI clock out frequency (in MHz)” on page 1-489

“Bit order” on page 1-491

“IP address (Ethernet shield)” on page 1-492
“MAC address” on page 1-493

“IP address (WiFi shield)” on page 1-494
“Service set identifier (SSID)” on page 1-495
“WiFi encryption” on page 1-496

“WEP key” on page 1-497

“WEP key index” on page 1-498

“WPA password” on page 1-499

“Communication interface” on page 1-500

“Verbose” on page 1-501

1-385

1 Configuration Parameters Dialog Box

1-386

Hardware Implementation Overview

Specify hardware options to simulate and generate code for models of computer-based
systems, such as embedded controllers.

Hardware Implementation pane parameters do not control hardware or compiler
behavior. The parameters describe hardware and compiler properties for the MATLAB
software.

+ Specifying hardware characteristics enables simulation of the model to detect error
conditions that can arise when executing code, such as hardware overflow.

* MATLAB uses the information to generate code for the platform that runs as
efficiently as possible. MATLAB software also uses the information to give bit-true
agreement for the results of integer and fixed-point operations in simulation and
generated code.

See Also

+ Configuring Hardware Properties

+ Hardware Implementation Pane

Hardware Implementation Pane

Hardware board
Select the hardware board upon which to run your model.

Changing this parameter updates the dialog box display so that it displays parameters
that are relevant to your hardware board.

To install support for a hardware board, start the Support Package Installer by selecting
Get Hardware Support Packages. Alternatively, in the MATLAB Command
Window, enter supportPackagelnstaller.

After installing support for a hardware board, reopen the Configuration Parameters
dialog box and select the hardware board.

Settings

Default: None if the specified system target file is ert.tlc, realtime.tlc, or
autosar.tlc. Otherwise, the default is Determine by Code Generation system
target file.

None

No hardware board is specified. The system target file specified for the model is
ert.tlc, realtime.tlc, or autosar.tlc.

Determine by Code Generation system target file
Specifies that the system target file setting determines the hardware board.
Get Hardware Support Packages

Invokes the Support Package Installer. After you install a hardware support package,
the list includes relevant hardware board names.

Hardware board name
Specifies the hardware board to use to implement the system this model represents.

Tips

* When you select a hardware board, parameters for board settings appear in the dialog
box display.
+ After you select a hardware board, you can select a device vendor and type.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

1-387

1 Configuration Parameters Dialog Box

1-388

Command-Line Information
Not available

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Device type

* Device vendor

+ Hardware Implementation Options

* Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

Hardware Implementation Pane

Code Generation system target file

System target file that you select on the Code Generation pane.

1-389

1 Configuration Parameters Dialog Box

Device vendor

Select the manufacturer of the hardware board to use to implement the system that this
model represents.

Settings
Default: Intel

If you have installed target support packages, the list of settings can include additional

manufacturers.

- AMD

* ARM Compatible
+ Altera

+ Analog Devices
+ Atmel

* Freescale
+ Infineon

+ Intel

* Microchip
* NXP

* Renesas

* STMicroelectronics
+ Texas Instruments
+ ASIC/FPGA

+ Custom Processor

Tips

* The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate
the device vendor and device type values by using the characters ->. For example:
"Intel->x86-64 (Linux 64)".

+ If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

1-390

Hardware Implementation Pane

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Command-Line Information
Parameter: ProdHWDeviceType
Type: string

Value: any valid value (see tips)
Default: " Intel "

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware board

* Device type

+ Hardware Implementation Options

* Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

1-391

1 Configuration Parameters Dialog Box

Device type

Select the type of hardware to use to implement the system that this model represents.
Settings

Default: x86—64 (Windows64)

If you have installed target support packages, the list of settings includes additional
types of hardware.

AMD" options:

+ Athlon 64

+ K5/K6/Athlon

+ x86-32 (Windows 32)
+ Xx86—-64 (Linux 64)

+ x86-64 (Mac 0S X)

+ x86-64 (Windows64)

ARM® options:

* ARM 10

+ ARM 11

- ARM 7

+ ARM 8

* ARM 9

* ARM Cortex

Altera® options:
* SoC (ARM CortexA)
Analog Devices™ options:

* ADSP-CM40x (ARM Cortex-M)
+ Blackfin

* SHARC

* TigerSHARC

1-392

Hardware Implementation Pane

Atmel® options:

AVR
AVR (32-bit)
AVR (8-bit)

Freescale™ options:

32-bit PowerPC
68332
68HCO8
68HC11
ColdFire
DSP563xx (16-bit mode)
HC(S)12
MPC52xx
MPC5500
MPC55xx
MPC5xx
MPC7xxx
MPC82xx
MPC83xx
MPC85xx
MPC86xx
MPC8xx
RS08

S08

S12x
StarCore

Infineon® options:

Cl6x, XClé6x
TriCore

1-393

1 Configuration Parameters Dialog Box

1-394

Intel® options:

+ x86-32 (Windows32)
+ x86-64 (Linux 64

+ x86-64 (Mac 0S X

+ x86-64 (Windows64

Microchip options:

- PIC18
+ dsPIC

NXP options:

+ Cortex—MO/MO+
+ Cortex-M3
+ Cortex—M4

® .
Renesas” options:

- M16C
- M32C
- R8C/Tiny
- SH-2/3/4
- V850

STMicroelectronics®:
+ ST10/SuperlO
Texas Instruments™ options:

+ C2000

+ C5000

+ C6000

+ MSP430

+ Stellaris Cortex—M3
+ TMS470

Hardware Implementation Pane

TMS570 Cortex—R4

ASIC/FPGA options:

ASIC/FPGA

Tips

Before you specify the device type, select the device vendor.

To view parameters for a device type, click the arrow button to the left of Device
details.

Selecting a device type specifies the hardware device to define system constraints:

+ Default hardware properties appear as the initial values.
* You cannot change parameters with only one possible value.

+ Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long
Device vendor /| Number of bits Largest Byte Round |[Shift |Long
Device type atomic size |ordering|to right |long

char |short|int |long|long |native pointer |int |float

long
AMD
Athlon 64 8 16 |32 |64 |64 |64 |64 Char|None |Little |[Zero |V m
Endian

K5/K6/ 8 16 |32 |32 |64 |32 |32 Char|None |Little |[Zero |V m
Athlon Endian
x86—-32 8 16 |32 |32 |64 (32 |32 Char|Float |Little |Zero |V m
(Windows32) Endian
x86—64 8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V m
(Linux 64) Endian

1-395

1 Configuration Parameters Dialog Box

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

x86—64 (Mac |8 16 |32|64 |64 |64 |64 Char|Float |Little |Zero |V |

0S X) Endian

x86—64 8 16 |32 |32 |64 |64 |64 Char|Float |Little |Zero |V o

(Windows64) Endian

ARM Compatible

ARM 8 16 |32 (32 |64 [32 |32 Long|Float |Little |Zero |V o

7/8/9/10 Endian

ARM 11 8 16 |32 (32 |64 [32 |32 Long|Double|Little |Zero |V o
Endian

ARM Cortex |8 16 |32 (32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian

Altera

SoC (ARM 8 16 |32 (32 (64 |32 (32 Char|None |Little |Zero |V o

Cortex A) Endian

Analog Devices

ADSP- 8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o

CM40x (ARM Endian

Cortex-M)

Blackfin 8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o
Endian

SHARC 32 |32 (3232 |64 (32 |32 Long|Double|Big Zero |V o
Endian

TigerSHARC |32 32 32132 |64 (32 32 Long|Double|Little |Zero |V]
Endian

1-396

Hardware Implementation Pane

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

Atmel

AVR 8 16 |16 |32 |64 |8 16 Char|None |Little |Zero |V O
Endian

AVR (32- 8 16 |32 |32 (64 |32 (32 Char|None |Little |Zero |V o

bit) Endian

AVR (8-bit) |8 16 |16 |32 |64 |16 |16 Char|None |[Little |Zero |V m
Endian

Freescale

32-bit 8 16 |32 (32 (64 |32 (32 Long|Double|Big Zero |V o

PowerPC Endian

68332 8 16 |32 (32 (64 |32 (32 Char|None |Big Zero |V o
Endian

68HCO08 8 16 |16 |32 |64 |8 8 Char|None |Big Zero |V o
Endian

68HC11 8 16 16 |32 |64 |8 8 Char|None |Big Zero |V]
Endian

ColdFire 8 16 |32 (32 |64 |32 |32 Char|None |Big Zero |V o
Endian

DSP563xx 8 16 |16 |32 |64 |16 |16 Char|None |[Little |Zero |V m

(16-bit Endian

mode)

DSP5685x 8 16 |16 |32 |64 |16 |16 Char|Float |Little |Zero |V o
Endian

1-397

1 Configuration Parameters Dialog Box

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

HC(S)12 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V |
Endian

MPC52xx, 8 16 |32 (32 |64 |32 |32 Long|None |Big Zero |V]

MPC5500, Endian

MPC55xx,

MPC5xx,

PC5xx,

MPC7xxX,

MPC82xx,

MPC83xx,

MPC86xx,

MPC8xx

MPC85xx 8 16 |32 |32 |64 |32 (32 Long|Double|Big Zero |V o
Endian

RS08 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

S08 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

S12x 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V |
Endian

StarCore 8 16 |32 (32 |64 |32 |32 Char|None |Little |Zero |V o
Endian

Infineon

Clex, XClé6x |8 16 16 |32 |64 16 16 Char|None |Little |Zero |V O
Endian

1-398

Hardware Implementation Pane

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

TriCore 8 16 |32 (32 (64 |32 (32 Char|None |Little |Zero |V |
Endian

Intel

x86—32 8 16 |32 |32 |64 |32 (32 Char|Float |Little |Zero |V o

(Windows32) Endian

x86—64 8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V o

(Linux 64) Endian

x86—-32 (Mac |8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V o

0S X) Endian

x86—32 8 16 |32 |32 |64 |64 |64 Char|Float |Little |Zero |V o

(Windows64) Endian

Microchip

PIC18 8 16 |16 |32 |64 |8 8 Char|None |Little |Zero |V o
Endian

dsPIC 8 16 |16 |32 |64 |16 |16 Char|None [Little |Zero |V m
Endian

NXP

Cortex—M0/ |8 16 |32 (32 |64 [32 |32 Long|Double|Little |Zero |V o

MO+ Endian

Cortex—M3 8 16 |32 (32 |64 [32 |32 Long|Double|Little |Zero |V o
Endian

Cortex—M4 8 16 |32 |32 (64 |32 (32 Long|Double|Little |Zero |V o
Endian

Renesas

1-399

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long
M16C 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
M32C 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
R8C/Tiny 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
SH-2/3/4 8 16 |32 (32 (64 |32 (32 Char|None |Big Zero |V o
Endian
V850 8 16 |32 |32 |64 |32 (32 Char|None |Little |Zero |V o
Endian
STMicroelectronics
ST10/ 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Superl0 Endian
Texas Instruments
C2000 16 (16 |16 (32 |64 (16 (32 Int |None |Little |Zero |V m
Endian
C5000 16 |16 |16 |32 |64 |16 |16 Int |None |Big Zero |V o
Endian
C6000 8 16 |32 |40 |64 |32 (32 Int |None |Little |Zero |V o
Endian
MSP430 8 16 |16 |32 |64 |16 |16 Char|None |[Little |Zero |V o
Endian
Stellaris 8 16 |32 (32 |6 32 (32 Long|Double|Little |Zero |V |
Cortex—M3 Endian

1-400

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device vendor /| Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering|to right |long
char [short |int |long|long |native pointer |int |float
long
TMS470 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian
TMS570 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Cortex—R4 Endian
ASIC/FPGA

ASIC/FPGA ‘NA ‘NA ‘NA‘NA‘NA |NA ‘NA ‘NA |NA |NA ‘NA ‘NA ‘NA

* The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter at the command line, separate
the device vendor and device type values by using the characters ->. For example:
"Intel->x86-64 (Linux 64)".

+ If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Menu options that are available in the menu depend on the Device vendor parameter
setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

* Number of bits: char
* Number of bits: short

* Number of bits: int

1-401

1 Configuration Parameters Dialog Box

* Number of bits: long

* Number of bits: long long

* Number of bits: float

* Number of bits: double

* Number of bits: native

* Number of bits: pointer

+ Largest atomic size: integer

+ Largest atomic size: floating-point
* Byte ordering

+ Signed integer division rounds to
+ Shift right on a signed integer as arithmetic shift
* Support long long

Whether you can modify the setting of a device-specific parameter varies according to
device type.

Command-Line Information

Parameter: ProdHWDeviceType

Type: string

Value: any valid value (see tips)

Default: " Intel->x86—-64 (Windows64)*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware board
* Device vendor

* Hardware Implementation Options

1-402

Hardware Implementation Pane

* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-403

1 Configuration Parameters Dialog Box

1-404

Device details

Click the arrow to list parameters for:

+ Data type bit specifications

+ Largest atomic sizes for integer and floating-point values
* Byte ordering

* What signed integer division rounds to

+ Whether signed integer as an arithmetic shift shifts right
* Whether there is support for the long long data type

Hardware Implementation Pane

Number of bits: char

Describe the character bit length for the hardware.
Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerChar
Type: integer

Value: any valid value
Default: 8

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-405

1 Configuration Parameters Dialog Box

See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-406

Hardware Implementation Pane

Number of bits: short

Describe the data bit length for the hardware.
Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value from 8 through 32.

Tip

All values must be a multiple of 8.
Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerShort
Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-407

1 Configuration Parameters Dialog Box

See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-408

Hardware Implementation Pane

Number of bits: int

Describe the data integer bit length for the hardware.
Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number from 8 through 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerint
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-409

1 Configuration Parameters Dialog Box

See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-410

Hardware Implementation Pane

Number of bits: long

Describe the data bit lengths for the hardware.

Settings

Default: 32

Minimum: 32

Maximum: 128

Enter a value from 32 through 128.

Tip

All values must be a multiple of 8 and from 32 through 128.
Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLong
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-411

1 Configuration Parameters Dialog Box

See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-412

Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the hardware supports.
Settings

Default: 64

Minimum: 64

Maximum: 128

The number of bits that represent the C long long data type.

Tips

+ Use the C long long data type only if your C compiler supports long long.
* You can change the value of this parameter for custom targets only. For custom
targets, all values must be a multiple of 8 and be between 64 and 128.

Dependencies

+ Enable long long enables use of this parameter.

* The value of this parameter must be greater than or equal to the value of Number of
bits: long.

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerLonglLong
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-413

1 Configuration Parameters Dialog Box

Application Setting
Efficiency Target specific
Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

+ “Support long long” on page 1-430
* Hardware Implementation Options
* Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

1-414

Hardware Implementation Pane

Number of bits: float

Describe the bit length of floating-point data for the hardware (read only).
Settings

Default: 32

Always equals 32.

Command-Line Information
Parameter: ProdBitPerFloat
Type: integer

Value: 32 (read-only)

Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Hardware Implementation Options
* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-415

1 Configuration Parameters Dialog Box

Number of bits: double

Describe the bit-length of double data for the hardware (read only).
Settings

Default: 64

Always equals 64.

Command-Line Information
Parameter: ProdBitPerDouble
Type: integer

Value: 64 (read only)

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Hardware Implementation Options
* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-416

Hardware Implementation Pane

Number of bits: native

Describe the microprocessor native word size for the hardware.
Settings

Default: 64

Minimum: 8

Maximum: 64

Enter a value from 8 through 64.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdWordSize
Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and for code
generation.

1-417

1 Configuration Parameters Dialog Box

See Also

Hardware Implementation Options

Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-418

Hardware Implementation Pane

Number of bits: pointer

Describe the bit-length of pointer data for the hardware.
Settings

Default: 64

Minimum: 8

Maximum: 64

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: ProdBitPerPointer
Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware Implementation Options
+ Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-419

1 Configuration Parameters Dialog Box

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the
hardware.

Settings
Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and
stored on the hardware.

Short

Specifies that short is the largest integer data type that can be atomically loaded
and stored on the hardware.

Int

Specifies that int is the largest integer data type that can be atomically loaded and
stored on the hardware.

Long

Specifies that long is the largest integer data type that can be atomically loaded and
stored on the hardware.

LongLong

Specifies that long long is the largest integer data type that can be atomically
loaded and stored on the hardware.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.
+ This parameter is enabled only if you can modify it for the selected hardware.

* You can set this parameter to LongLong only if the hardware supports the C long
long data type and you have selected Enable long long.

1-420

Hardware Implementation Pane

Command-Line Information

Parameter: ProdLargestAtomiclnteger

Type: string

Value: "Char® | "Short" | "Int" | "Long" | "LongLong"
Default: "Char*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

* Hardware Implementation Options

Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-421

1 Configuration Parameters Dialog Box

1-422

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on
the hardware.

Settings
Default: Float

Float

Specifies that Float is the largest floating-point data type that can be atomically
loaded and stored on the hardware.

Double

Specifies that double is the largest floating-point data type that can be atomically
loaded and stored on the hardware.

None
Specifies that there is no applicable setting or not to use this parameter in generating
multirate code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or

unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: ProdLargestAtomicFloat

Type: string

Value: "Float™ | "Double” | "None*
Default: "Float*”

Recommended Settings

Application Setting
Debugging No impact

Hardware Implementation Pane

Application Setting
Traceability No impact
Efficiency Target specific

Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

* Hardware Implementation Options
* Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

1-423

1 Configuration Parameters Dialog Box

1-424

Byte ordering

Describe the byte ordering for the hardware board.
Settings

Default: Little Endian

Unspecified
Specifies that the code determines the endianness of the hardware. This choice is the
least efficient.
Big Endian
The most significant byte appears first in the byte ordering.
Little Endian
The least significant byte appears first in the byte ordering.
Dependencies
* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.
* This parameter is enabled only if you can modify it for the selected hardware.
Command-Line Information
Parameter: ProdEndianess
Type: string

Value: "Unspecified” | "LittleEndian” | "BigEndian*
Default: "Little Endian”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware Implementation Options

Hardware Implementation Pane

* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-425

1 Configuration Parameters Dialog Box

Signed integer division rounds to

Describe how your compiler for the hardware rounds the result of dividing two signed
integers.

Settings
Default: Zero

Undefined
Choose this option if neither Zero nor Floor describes the compiler behavior, or if
that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer
to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer
to negative infinity.

Tips

* To simulate rounding behavior of the C compiler that you use to compile generated
code, use the Integer rounding mode parameter for blocks. This setting appears on
the Signal Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product block.

* For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Rounding”.

* For more information on how this parameter affects code generation, see Hardware
Implementation Options.

* This table lists the compiler behavior described by the options for this parameter.

N D Ideal N/D |Zero Floor Undefined
33 4 8.25 8 8 8

-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9

1-426

Hardware Implementation Pane

N D Ideal N/D |Zero Floor Undefined
-33 -4 8.25 8 8 8or9
Dependency

Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.
Command-Line Information

Parameter: ProdIntDivRoundTo

Type: string

Value: "Floor™ | "Zero™ | "Undefined”
Default: "Zero*"

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No impact for simulation or during development.
Floor for production code generation.

See Also

* Hardware Implementation Options
* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-427

1 Configuration Parameters Dialog Box

1-428

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the hardware fills the sign bit in a right shift of a signed
integer.

Settings
Default: On

¥ On
Generates simple, efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.
I off
Generates fully portable but less efficient code to implement right arithmetic shifts.
Tips
* Select this parameter if the C compiler implements a signed integer right shift as an

arithmetic right shift.

* An arithmetic right shift fills bits vacated by the right shift with the value of the
most significant bit. The most significant bit indicates the sign of the number in twos
complement notation.

Dependency

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: ProdShiftRightintArith

Type: string

Value: "on® | "off"
Default: "on*

Recommended settings

Application Setting
Debugging No impact

Hardware Implementation Pane

Application Setting
Traceability No impact
Efficiency On

Safety precaution No impact
See Also

Hardware Implementation Options
* Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-429

1 Configuration Parameters Dialog Box

1-430

Support long long

Specify that your C compiler supports the C long long data type. Most C99 compilers
support long long.

Settings
Default: Off

Y1 On

Enables use of C long long data type for simulation and code generation on the
hardware.

Off

Disables use of C long long data type for simulation or code generation on the
hardware.

Tips

* This parameter is enabled only if the selected hardware supports the C long long
data type.

+ If your compiler does not support C long long, do not select this parameter.
Dependencies
This parameter enables Number of bits: long long.

Command-Line Information
Parameter: ProdLonglLongMode
Type: string

Value: "on”" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

Hardware Implementation Pane

Application Setting

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

* “Number of bits: long long” on page 1-413
+ Hardware Implementation Options
+ Specifying Production Hardware Characteristics

* Hardware Implementation Pane

Test hardware is the same as production hardware

Specify whether the test hardware differs from the production hardware.
Settings

Default: On

On

String that specifies that the hardware used to test the code generated from the
model is the same as the production hardware, or has the same characteristics.

Off

String that specifies that the hardware used to test the code generated from the
model has different characteristics than the production hardware.

Tip

You can generate code that runs on the test hardware but behaves as if it had been
generated for and executed on the deployment hardware.

Dependency
Enables test hardware parameters.
Recommended settings

Application Setting
Debugging No impact

1-431

1 Configuration Parameters Dialog Box

Application Setting

Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

+ Specifying Test Hardware Characteristics
* Hardware Implementation Options

Hardware Implementation Pane

1-432

Hardware Implementation Pane

Test device vendor and type

Select the manufacturer and type of the hardware to use to test the code generated from
the model.

Settings

Default: Intel, x86—-64 (Windows64)

AMD

ARM Compatible
Altera

Analog Devices
Atmel

Freescale
Infineon

Intel

Microchip

NXP

Renesas
STMicroelectronics
Texas Instruments
ASIC/FPGA

Custom Processor

AMD options:

Athlon 64
K5/K6/Athlon
x86—32 (Windows 32)
x86—64 (Linux 64)
x86—64 (Mac 0OS X)
x86—64 (Windows64)

1-433

1 Configuration Parameters Dialog Box

ARM options:

* ARM 10

* ARM 11

* ARM 7

* ARM 8

* ARM 9

* ARM Cortex

Altera options:
*+ SoC (ARM CortexA)

Analog Devices options:

+ ADSP-CM40x (ARM Cortex-M)
+ Blackfin

+ SHARC

* TigerSHARC

Atmel options:

- AW
- AVR (32-bit)
- AVR (8-bit)

Freescale options:

+ 32-bit PowerPC

+ 68332

+ B68HCOS8

* B68HC11

+ ColdFire

+ DSP563xx (16-bit mode)
+ HC(8)12

* MPC52xx

1-434

Hardware Implementation Pane

* MPC5500
* MPC55xx
* MPC5xx
* MPC7xxx
* MPC82xx
* MPC83xx
* MPC85xx
* MPC86xx
* MPC8xx
* RSO08

+ S08

+ S12x

+ StarCore

Infineon options:
+ Cl6x, XC16x
* TriCore
Intel options:

+ x86-32 (Windows32)
+ x86-64 (Linux 64

+ x86-64 (Mac 0S X

+ x86—64 (Windows64

Microchip options:

* PIC18
+ dsPIC

NXP options:

+ Cortex—MO/MO+
+ Cortex—M3

1-435

1 Configuration Parameters Dialog Box

1-436

+ Cortex—M4

Renesas options:

+ M16C

+ M32C

*+ R8C/Tiny

+ SH-2/3/74

+ V850
STMicroelectronics:

+ ST10/SuperlO

Texas Instruments options:

+ C2000

- C5000

+ C6000

+ MSP430

+ Stellaris Cortex—M3
+ TMS470

+ TMS570 Cortex—R4

ASIC/FPGA options:

+ ASIC/FPGA

Tips

+ Before you select the device type, select the device vendor.

+ Selecting a device type specifies the hardware device to define system constraints:

+ Default hardware properties appear as the initial values.
* You cannot change parameters with only one possible value.

+ Parameters with more than one possible value provide a list of valid values.

The following table lists values for each device type.

Hardware Implementation Pane

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long
AMD
Athlon 64 8 16 (32 64 |64 (64 |64 Char|None |Little |Zero |V O
Endian
K5/K6/ 8 16 |32 (32 (64 |32 (32 Char|None |Little |Zero |V o
Athlon Endian
x86—32 8 16 |32 |32 |64 |32 (32 Char|Float |Little |Zero |V o
(Windows32) Endian
x86—64 8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V o
(Linux 64) Endian
x86—64 (Mac |8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V o
0S X) Endian
x86—64 8 16 |32 |32 |64 |64 |64 Char|Float |Little |Zero |V o
(Windows64) Endian
ARM Compatible
ARM 8 16 |32 (32 |64 [32 |32 Long|Float |Little |Zero |V |
7/8/9/10 Endian
ARM 11 8 16 |32 (32 |64 [32 |32 Long|Double|Little |Zero |V |
Endian
ARM Cortex |8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o
Endian
Altera
SoC (ARM 8 16 |32 (32 |64 [32 |32 Char|None |Little |Zero |V o
Cortex A) Endian

1-437

1 Configuration Parameters Dialog Box

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

Analog Devices

ADSP- 8 16 |32 (32 |64 [32 |32 Long|Double|Little |Zero |V o

CM40x (ARM Endian

Cortex-M)

Blackfin 8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V |
Endian

SHARC 32 32 32132 |64 (32 32 Long|Double|Big Zero |V]
Endian

TigerSHARC (32 |32 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V |
Endian

Atmel

AVR 8 16 |16 |32 |64 |8 16 Char|None |Little |Zero |V o
Endian

AVR (32- 8 16 |32 (32 |64 [32 |32 Char|None |Little |Zero |V o

bit) Endian

AVR (8-bit) |8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian

Freescale

32-bit 8 16 |32 (32 |64 [32 |32 Long|Double|Big Zero |V |

PowerPC Endian

68332 8 16 |32 (32 |64 |32 |32 Char|None |Big Zero |V o
Endian

68HCO8 8 16 |16 |32 |64 |8 8 Char|None |Big Zero |V o
Endian

1-438

Hardware Implementation Pane

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

68HC11 8 16 |16 |32 |64 |8 8 Char|None |Big Zero |V o
Endian

ColdFire 8 16 |32 (32 |64 |32 |32 Char|None |Big Zero |V]
Endian

DSP563xx 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o

(16-bit Endian

mode)

DSP5685x 8 16 |16 |32 |64 |16 |16 Char|Float |Little |Zero |V o
Endian

HC(S)12 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

MPC52xx, 8 16 |32 (32 |64 |32 (32 Long|None |Big Zero |V o

MPC5500, Endian

MPC55xx,

MPC5xx,

PC5xx,

MPC7xxx,

MPC82xx,

MPC83xx,

MPC86xx,

MPC8xx

MPC85xx 8 16 |32 (32 (64 |32 (32 Long|Double|Big Zero |V o
Endian

RS08 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

1-439

1 Configuration Parameters Dialog Box

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

S08 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

S12x 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

StarCore 8 16 (32|32 |64 |32 |32 Char|None |Little |Zero |V o
Endian

Infineon

Cl6x, XC1l6x |8 16 16 |32 |64 16 16 Char|None |Little |Zero |V]
Endian

TriCore 8 16 |32 (32 |64 [32 |32 Char|None |Little |Zero |V o
Endian

Intel

Xx86—-32 8 16 (32|32 |64 |32 |32 Char|Float |Little |Zero |V o

(Windows32) Endian

xX86—64 8 16 (32|64 |64 |64 |64 Char|Float |Little |Zero |V o

(Linux 64) Endian

x86—32 (Mac |8 16 |32 (64 |64 |64 |64 Char|Float |Little |Zero |V o

0s X) Endian

Xx86—-32 8 16 (32|32 |64 |64 |64 Char|Float |Little |Zero |V o

(Windows64) Endian

Microchip

PIC18 8 16 |16 |32 |64 |8 8 Char|None |Little |Zero |V o
Endian

1-440

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering|to right |long
char [short |int |long|long |native pointer |int |float
long
dsPIC 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V m
Endian
NXP
Cortex-M0/ |8 16 |32 (32 |64 |32 |32 Long|Double|Little |Zero |V m
MO+ Endian
Cortex—M3 8 16 |32 |32 (64 |32 (32 Long|Double|Little |Zero |V o
Endian
Cortex—M4 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian
Renesas
M16C 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
M32C 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V m
Endian
R8C/Tiny 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
SH-2/3/4 8 16 |32 (32 (64 |32 (32 Char|None |Big Zero |V o
Endian
V850 8 16 |32 |32 (64 |32 (32 Char|None |Little |Zero |V o
Endian
STMicroelectronics
ST10/ 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Superl0 Endian

Texas Instruments

1-441

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering|to right |long
char [short |int |long|long |native pointer |int |float
long
C2000 16 |16 |16 |32 |64 |16 |32 Int |None |Little |Zero |V o
Endian
C5000 16 |16 |16 |32 |64 |16 |16 Int |None |Big Zero |V o
Endian
C6000 8 16 (3240 (64 (32 |32 Int |None [Little |Zero |V m
Endian
MSP430 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V m
Endian
Stellaris 8 16 |32 |32 |6 32 (32 Long|Double|Little |Zero |V |
Cortex—M3 Endian
TMS470 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian
TMS570 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Cortex—R4 Endian
ASIC/FPGA
ASIC/FPGA |NA |NA |NA|NA |[NA [NA |[NA [NA [NA [NA |NA |NA [NA

1-442

If your hardware does not match one of the listed types, select Custom.

The Device vendor and Device type fields share the command-line parameter
TargetHWDeviceType. When specifying this parameter at the command line,
separate the device vendor and device type values by using the characters ->. For
example: "Intel->x86-64 (Linux 64)".

If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

Hardware Implementation Pane

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Menu options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

Number of bits: char

Number of bits: short

Number of bits: int

Number of bits: long

Number of bits: long long

Number of bits: float

Number of bits: double

Number of bits: native

Number of bits: pointer

Largest atomic size: integer
Largest atomic size: floating-point
Byte ordering

Signed integer division rounds to
Shift right on a signed integer as arithmetic shift
Support long long

Whether you can modify the value of a device-specific parameter varies according to
device type.

Command-Line Information

Parameter: TargetHWDeviceType

Type: string

Value: any valid value (see tips)

Default:" Intel->x86—64 (Windows64) "

1-443

1 Configuration Parameters Dialog Box

1-444

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* Hardware board

Setting

No impact
No impact
No impact

No impact

+ Specifying Test Hardware Characteristics

* Hardware Implementation Options

+ Hardware Implementation Pane

Hardware Implementation Pane

Device vendor

Select the manufacturer of the hardware board to use to implement the test system that

this model represents.

Settings

Default: Intel

AMD

ARM Compatible
Altera

Analog Devices
Atmel
Freescale
Infineon

Intel
Microchip

NXP

Renesas

STMicroelectronics

Texas Instruments

ASIC/FPGA

Custom Processor

Tips

The Device vendor and Device type fields share the command-line parameter
TargetHWDeviceType. When specifying this parameter from the command line,
separate the device vendor and device type values by using the characters ->. For

example: " Intel->x86-64 (Linux 64)".

If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and

Device Type Values”.

1-445

1 Configuration Parameters Dialog Box

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Command-Line Information

Parameter: TargetHWDeviceType Vendor
Type: string

Value: any valid value (see tips)

Default: " Intel "

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware board

* Device type

+ Hardware Implementation Options

* Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

1-446

Hardware Implementation Pane

Device type

Select the type of hardware to use to implement the test system.
Settings

Default: x86—64 (Windows64)

AMD options:

+ Athlon 64

+ K5/K6/Athlon

+ x86-32 (Windows 32)
+ Xx86-64 (Linux 64)

+ Xx86-64 (Mac 0S X)

+ x86-64 (Windows64)

ARM options:

* ARM 10

+ ARM 11

« ARM 7

- ARM 8

* ARM 9

* ARM Cortex

Altera options:
* SoC (ARM CortexA)
Analog Devices options:

+ ADSP-CM40x (ARM Cortex-M)
+ Blackfin

* SHARC

* TigerSHARC

Atmel options:

+ AVR

1-447

1 Configuration Parameters Dialog Box

1-448

AVR (32-bit)
AVR (8-bit)

Freescale options:

32-bit PowerPC
68332
68HCO8
68HC11
ColdFire
DSP563xx (16-bit mode)
HC(S)12
MPC52xx
MPC5500
MPC55xx
MPC5xx
MPC7xxx
MPC82xx
MPC83xx
MPC85xx
MPC86xx
MPC8xx
RS08

S08

S12x
StarCore

Infineon options:

Cl6x, XC16x
TriCore

Intel options:

x86—32 (Windows32)

Hardware Implementation Pane

x86—64 (Linux 64
x86—64 (Mac 0OS X
x86—64 (Windows64

Microchip options:

P1C18
dsPIC

NXP options:

Cortex—MO/MO+
Cortex—M3
Cortex—M4

Renesas options:

M16C
M32C
R8C/Tiny
SH-2/3/4
V850

STMicroelectronics:

ST10/Superl0

Texas Instruments options:

C2000

C5000

C6000

MSP430

Stellaris Cortex—M3
TMS470

TMS570 Cortex—R4

ASIC/FPGA options:

ASIC/FPGA

1-449

1 Configuration Parameters Dialog Box

Tips

+ Before you specify the device type, select the device vendor.

* Selecting a device type specifies the hardware device to define system constraints:

This table lists values for each device type.

Default hardware properties appear in the dialog box display as the initial values.

You cannot change parameters with only one possible value.

Parameters with more than one possible value provide a list of valid values.

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor /| Number of bits Largest Byte Round [Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

AMD
Athlon 64 8 16 |32 |64 |64 |64 |64 Char|None |[Little |Zero |V o

Endian
K5/K6/ 8 16 (32|32 |64 |32 |32 Char|None |[Little |Zero |V O
Athlon Endian
x86—32 8 16 (32|32 |64 |32 |32 Char|Float |Little |Zero |V O
(Windows32) Endian
x86—64 8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V O
(Linux 64) Endian
x86—64 (Mac |8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V o
0S X) Endian
x86—64 8 16 32|32 |64 |64 |64 Char|Float |Little |Zero |V O
(Windows64) Endian

ARM Compatible

1-450

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long
ARM 8 16 |32 (32 |64 (32 |32 Long|Float |Little |Zero |V m|
7/8/9/10 Endian
ARM 11 8 16 |32 (32 |64 |32 (32 Long|Double|Little |Zero |V |
Endian
ARM Cortex |8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian
Altera
SoC (ARM 8 16 |32 |32 |64 |32 (32 Char|None |Little |Zero |V o
Cortex A) Endian
Analog Devices
ADSP- 8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o
CM40x (ARM Endian
Cortex-M)
Blackfin 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian
SHARC 32 (32 32132 |64 |32 (32 Long|Double|Big Zero |V o
Endian
TigerSHARC (32 |32 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o
Endian
Atmel
AVR 8 16 |16 |32 |64 |8 16 Char|None |Little |Zero |V m
Endian
AVR (32- 8 16 |32 (32 (64 |32 (32 Char|None |Little |Zero |V o
bit) Endian

1-451

1 Configuration Parameters Dialog Box

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

AVR (8-bit) |8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V m
Endian

Freescale

32-bit 8 16 |32 (32 |64 |32 |32 Long|Double|Big Zero |V m

PowerPC Endian

68332 8 16 |32 |32 (64 |32 (32 Char|None |Big Zero |V o
Endian

68HC08 8 16 |16 |32 |64 |8 8 Char|None |Big Zero |V o
Endian

68HC11 8 16 |16 |32 |64 |8 8 Char|None |Big Zero |V o
Endian

ColdFire 8 16 |32 (32 |64 [32 |32 Char|None |Big Zero |V o
Endian

DSP563xx 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o

(16-bit Endian

mode)

DSP5685x 8 16 |16 |32 |64 |16 |16 Char|Float |Little |Zero |V o
Endian

HC(S)12 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

1-452

Hardware Implementation Pane

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long

MPC52xx, 8 16 |32 |32 |64 |32 (32 Long|None |Big Zero |V o

MPC5500, Endian

MPC55xx,

MPC5xx,

PC5xx,

MPC7xxX,

MPC82xx,

MPC83xx,

MPC86xx,

MPC8xx

MPC85xx 8 16 |32 |32 |64 |32 (32 Long|Double|Big Zero |V o
Endian

RS08 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

S08 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

S12x 8 16 |16 |32 |64 |16 |16 Char|None |Big Zero |V o
Endian

StarCore 8 16 |32 |32 |64 |32 (32 Char|None |Little |Zero [V m|
Endian

Infineon

Cl6x, XC16x |8 16 16 |32 |64 16 16 Char|{None |Little |Zero |V O
Endian

TriCore 8 16 |32 (32 (64 |32 (32 Char|None |Little |Zero |V o
Endian

Intel

1-453

1 Configuration Parameters Dialog Box

Key:

float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to

Shift right = Shift right on a signed integer as arithmetic shift

Long long = Support long long

Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering|to right |long
char [short |int |long|long |native pointer |int |float
long

x86—32 8 16 32|32 |64 (32 |32 Char|Float |Little |Zero |V m

(Windows32) Endian

x86—64 8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V o

(Linux 64) Endian

x86—-32 (Mac |8 16 |32 |64 |64 |64 |64 Char|Float |Little |Zero |V |

0S X) Endian

x86—32 8 16 |32 |32 |64 |64 |64 Char|Float |Little |Zero |V o

(Windows64) Endian

Microchip

PIC18 8 16 |16 |32 |64 |8 8 Char|None |Little |Zero |V O
Endian

dsPIC 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian

NXP

Cortex-M0/ |8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o

MO+ Endian

Cortex—M3 8 16 |32 (32 (64 |32 (32 Long|Double|Little |Zero |V o
Endian

Cortex—Mm4 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian

Renesas

M16C 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian

1-454

Hardware Implementation Pane

Key: float and double (not listed) always equal 32 and 64, respectively
Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long
Device vendor / |Number of bits Largest Byte Round |Shift |Long
Device type atomic size |ordering |to right |long
char [short |int |long|long |native pointer |int |float
long
M32C 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
R8C/Tiny 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V m
Endian
SH-2/3/4 8 16 |32 (32 |64 |32 |32 Char|None |Big Zero |V o
Endian
V850 8 16 32|32 |64 (32 |32 Char|None |Little |Zero |V m
Endian
STMicroelectronics
ST10/ 8 16 |16 |32 |64 (16 |16 Char|None |Little |Zero |V O
Superl0 Endian
Texas Instruments
C2000 16 16 16 |32 |64 16 |32 Int |None |Little |Zero |V]
Endian
C5000 16 |16 |16 (32 |64 |16 |16 Int |None |Big Zero |V o
Endian
C6000 8 16 |32 |40 |64 (32 |32 Int |None [Little |Zero |V m
Endian
MSP430 8 16 |16 |32 |64 |16 |16 Char|None |Little |Zero |V o
Endian
Stellaris 8 16 (32|32 |6 32 |32 Long|Double|Little |Zero |V]
Cortex—M3 Endian
TMS470 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Endian

1-455

1 Configuration Parameters Dialog Box

Key: float and double (not listed) always equal 32 and 64, respectively

Round to = Signed integer division rounds to
Shift right = Shift right on a signed integer as arithmetic shift
Long long = Support long long

Device vendor /| Number of bits Largest Byte Round [Shift |Long
Device type atomic size |ordering|to right |long
char [short |int |long|long |native pointer |int |float
long
TMS570 8 16 |32 |32 |64 |32 (32 Long|Double|Little |Zero |V o
Cortex—R4 Endian
ASIC/FPGA

ASIC/FPGA \NA \NA \NA\NA\NA |NA \NA \NA |NA |NA \NA \NA \NA

+ The Device vendor and Device type fields share the command-line parameter
ProdHWDeviceType. When specifying this parameter atth e command line, separate
the device vendor and device type values by using the characters ->. For example:
"Intel->x86-64 (Linux 64)".

+ If you have a Simulink Coder license and you want to add Device vendor and
Device type values to the default set, see “Register Additional Device Vendor and
Device Type Values”.

Dependencies

The Device vendor and Device type parameter values reflect available device support
for the selected hardware board.

Options that are available depend on the Device vendor parameter setting.

With the exception of device vendor ASIC/FPGA, selecting a device type sets the following
parameters:

* Number of bits: char

* Number of bits: short

* Number of bits: int

* Number of bits: long

+ Number of bits: long long

1-456

Hardware Implementation Pane

* Number of bits: float

* Number of bits: double

* Number of bits: native

* Number of bits: pointer

* Largest atomic size: integer

+ Largest atomic size: floating-point

* Byte ordering

+ Signed integer division rounds to

+ Shift right on a signed integer as arithmetic shift
* Support long long

Whether you can modify the value of a device-specific parameter varies according to the
device type.

Command-Line Information

Parameter: TargetHWDeviceType_ Type
Type: string

Value: any valid value (see tips)

Default: " Intel->x86—64 (Windows64)*

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware board

* Device vendor

+ Hardware Implementation Options

+ Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

1-457

1 Configuration Parameters Dialog Box

1-458

Hardware Implementation Pane

Number of bits: char

Describe the character bit length for the hardware that you use to test code.
Settings

Default: 8

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerChar
Type: integer

Value: any valid value

Default: 8

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-459

1 Configuration Parameters Dialog Box

See Also

Specifying Test Hardware Characteristics

Hardware Implementation Options

Hardware Implementation Pane

1-460

Hardware Implementation Pane

Number of bits: short

Describe the data bit length for the hardware that you use to test code.
Settings

Default: 16

Minimum: 8

Maximum: 32

Enter a value between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerShort
Type: integer

Value: any valid value

Default: 16

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-461

1 Configuration Parameters Dialog Box

See Also

Specifying Test Hardware Characteristics

Hardware Implementation Options

Hardware Implementation Pane

1-462

Hardware Implementation Pane

Number of bits: int

Describe the data integer bit length of the hardware that you use to test code.
Settings

Default: 32

Minimum: 8

Maximum: 32

Enter a number between 8 and 32.

Tip

All values must be a multiple of 8.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerint
Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-463

1 Configuration Parameters Dialog Box

See Also

Specifying Test Hardware Characteristics

Hardware Implementation Options

Hardware Implementation Pane

1-464

Hardware Implementation Pane

Number of bits: long

Describe the data bit lengths for the hardware that you use to test code.
Settings

Default: 32

Minimum: 32

Maximum: 64

Enter a value between 32 and 64. (The value 64 is selected by default if you run
MATLAB software on a 64-bit host computer and select the MATLAB host as the
test hardware — that is, TargetHWDeviceType equals "Generic->MATLAB Host
Computer®.)

Tip
All values must be a multiple of 8 and between 32 and 64.
Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerLong
Type: integer

Value: any valid value

Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific

1-465

1 Configuration Parameters Dialog Box

1-466

Application Setting

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

* Specifying Test Hardware Characteristics
* Hardware Implementation Options

* Hardware Implementation Pane

Number of bits: long long

Describe the length in bits of the C long long data type that the test hardware
supports.

Settings

Default: 64

Minimum: 64

Maximum: 128

The number of bits that represent the C long long data type.
Tips

* Use the long long data type only if your C compiler supports long long.

* You can change the value for custom targets only. For custom targets, all values must
be a multiple of 8 and between 64 and 128.

Dependencies

+ Enable long long enables use of this parameter.

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* The value of this parameter must be greater than or equal to the value of Number of
bits: long.

Hardware Implementation Pane

This parameter is enabled only if you can modify it for the selected hardware.
Command-Line Information

Parameter: TargetBitPerLonglLong

Type: integer

Value: any valid value

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.
See Also

* “Support long long” on page 1-483
* Specifying Test Hardware Characteristics
+ Hardware Implementation Options

* Hardware Implementation Pane

1-467

1 Configuration Parameters Dialog Box

Number of bits: float

Describe the bit length of floating-point data for the hardware that you use to test code
(read only).

Settings
Default: 32
Always equals 32.

Command-Line Information
Parameter: TargetBitPerFloat
Type: integer

Value: 32 (read-only)

Default: 32

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Hardware Implementation Options
* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-468

Hardware Implementation Pane

Number of bits: double

Describe the bit-length of double data for the hardware that you use to test code (read
only).

Settings
Default: 64
Always equals 64.

Command-Line Information
Parameter: TargetBitPerDouble
Type: integer

Value: 64 (read only)

Default: 64

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ Hardware Implementation Options
* Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-469

1 Configuration Parameters Dialog Box

1-470

Number of bits: native

Describe the microprocessor native word size for the hardware that you use to test code.
Settings

Default: 32

Minimum: 8

Maximum: 64

Enter a value between 8 and 64. (The value 64 is selected by default if you run MATLAB

software on a 64-bit host computer and select the MATLAB host as the test hardware —

that is, TargetHWDeviceType equals "Generic->MATLAB Host Computer”.)

Tip

All values must be a multiple of 8.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: TargetWordSize

Type: integer

Value: any valid value
Default: 32

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

Hardware Implementation Pane

See Also

Specifying Test Hardware Characteristics

Hardware Implementation Options

Hardware Implementation Pane

1-471

1 Configuration Parameters Dialog Box

Number of bits: pointer

Describe the bit-length of pointer data for the hardware that you use to test code.
Settings

Default: Device-specific value (see Dependencies)

Minimum: 8

Maximum: 64

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information
Parameter: TargetBitPerPointer
Type: integer

Value: any valid value

Default: device dependent

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Hardware Implementation Options
+ Specifying Production Hardware Characteristics

* Hardware Implementation Pane

1-472

Hardware Implementation Pane

Largest atomic size: integer

Specify the largest integer data type that can be atomically loaded and stored on the
hardware that you use to test code.

Settings
Default: Char

Char

Specifies that char is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Short

Specifies that short is the largest integer data type that can be atomically loaded
and stored on the hardware that you use to test code.

Int

Specifies that Int is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

Long

Specifies that long is the largest integer data type that can be atomically loaded and
stored on the hardware that you use to test code.

LongLong

Specifies that long long is the largest integer data type that can be atomically
loaded and stored on the hardware that you use to test code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or
unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.
* This parameter is enabled only if you can modify it for the selected hardware.

* You can set this parameter to LongLong only if the hardware used to test the code
supports the C long long data type and you have selected Enable long long.

1-473

1 Configuration Parameters Dialog Box

1-474

Command-Line Information

Parameter: TargetLargestAtomiclnteger

Type: string

Value: "Char® | "Short" | "Int" | "Long" | "LongLong"
Default: "Char”

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

See Also

* Hardware Implementation Options
* Specifying Production Hardware Characteristics
* Hardware Implementation Pane

* “Support long long” on page 1-483

Hardware Implementation Pane

Largest atomic size: floating-point

Specify the largest floating-point data type that can be atomically loaded and stored on
the hardware that you use to test code.

Settings
Default: None

Float

Specifies that Float is the largest floating-point data type that can be atomically
loaded and stored on the hardware that you use to test code.

Double

Specifies that double is the largest floating-point data type that can be atomically
loaded and stored on the hardware that you use to test code.

None
Specifies that there is no applicable setting or not to use this parameter in generating
multirate code.

Tip

Use this parameter, where possible, to remove unnecessary double-buffering or

unnecessary semaphore protection, based on data size, in generated multirate code.

Dependencies

+ Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: TargetLargestAtomicFloat

Type: string

Value: "Float™ | "Double” | "None*
Default: "None™

Recommended Settings

Application Setting
Debugging No impact

1-475

1 Configuration Parameters Dialog Box

Application Setting
Traceability No impact
Efficiency Target specific

Safety precaution No impact for simulation or during development.

Match operation of compiler and hardware for code
generation.

See Also

* Hardware Implementation Options
* Specifying Production Hardware Characteristics

+ Hardware Implementation Pane

1-476

Hardware Implementation Pane

Byte ordering

Describe the byte ordering for the hardware that you use to test code.
Settings

Default: Unspecified

Unspecified

Specifies that the code determines the endianness of the hardware. This choice is the
least efficient.

Big Endian
The most significant byte comes first.
Little Endian

The least significant byte comes first.

Note: For guidelines about configuring Production hardware controls for code
generation, see Hardware Implementation Options.

Dependencies

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

* This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: TargetEndianess

Type: string

Value: "Unspecified” | "LittleEndian” | "BigEndian*
Default: "Unspecified”

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

1-477

1 Configuration Parameters Dialog Box

Application Setting
Efficiency No impact
Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.
See Also

* Specifying Test Hardware Characteristics
* Hardware Implementation Options

* Hardware Implementation Pane

1-478

Hardware Implementation Pane

Signed integer division rounds to

Describe how your compiler for the test hardware rounds the result of dividing two
signed integers.

Settings
Default: Undefined

Undefined

Choose this option if neither Zero nor Floor describes the compiler behavior, or if
that behavior is unknown.

Zero

If the quotient is between two integers, the compiler chooses the integer that is closer
to zero as the result.

Floor

If the quotient is between two integers, the compiler chooses the integer that is closer
to negative infinity.

Tips

* Use the Integer rounding mode parameter on your model's blocks to simulate the
rounding behavior of the C compiler that you use to compile code generated from the
model. This setting appears on the Signal Attributes pane of the parameter dialog
boxes of blocks that can perform signed integer arithmetic, such as the Product
block.

+ For most blocks, the value of Integer rounding mode completely defines rounding
behavior. For blocks that support fixed-point data and the Simplest rounding mode,
the value of Signed integer division rounds to also affects rounding. For details,
see “Rounding”.

* For information on how this option affects code generation, see Hardware
Implementation Options.

* This table illustrates the compiler behavior described by the options for this
parameter.

N D Ideal N/D |Zero Floor Undefined
33 4 8.25 8 8 8

1-479

1 Configuration Parameters Dialog Box

1-480

N D Ideal N/D |Zero Floor Undefined

-33 4 -8.25 -8 -9 -8 or -9

33 -4 -8.25 -8 -9 -8 or -9

-33 -4 8.25 8 8 8or9
Dependency

Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.
Command-Line Information

Parameter: TargetintDivRoundTo

Type: string

Value: "Floor™ | "Zero®™ | "Undefined”
Default: "Undefined”

Recommended settings

Application Setting

Debugging No impact for simulation or during development.
Undefined for production code generation.

Traceability No impact for simulation or during development.
Zero or Floor for production code generation.

Efficiency No impact for simulation or during development.
Zero for production code generation.

Safety precaution No impact for simulation or during development.
Floor for production code generation.

See Also

* Specifying Test Hardware Characteristics
* Hardware Implementation Options

+ Hardware Implementation Pane

Hardware Implementation Pane

Shift right on a signed integer as arithmetic shift

Describe how your compiler for the test hardware fills the sign bit in a right shift of a
signed integer.

Settings

Default: On

¥ On
Generates simple, efficient code whenever the Simulink model performs arithmetic
shifts on signed integers.

I off

Generates fully portable but less efficient code to implement right arithmetic shifts.
Tips
+ Select this parameter if your C compiler implements a signed integer right shift as an

arithmetic right shift.

* An arithmetic right shift fills bits vacated by the right shift with the value of the most
significant bit, which indicates the sign of the number in twos complement notation. It
is equivalent to dividing the number by 2.

* This setting affects only code generation.
Dependency

* Selecting a device by using the Device vendor and Device type parameters sets a
device-specific value for this parameter.

+ This parameter is enabled only if you can modify it for the selected hardware.

Command-Line Information

Parameter: TargetShiftRightIntArith

Type: string

Value: "on”" | "off"

Default: "on*

Recommended settings

Application Setting
Debugging No impact

1-481

1 Configuration Parameters Dialog Box

Application Setting
Traceability No impact
Efficiency On

Safety precaution No impact
See Also

+ Specifying Test Hardware Characteristics
* Hardware Implementation Options

Hardware Implementation Pane

1-482

Hardware Implementation Pane

Support long long

Specify that your C compiler supports the C long long data type. Most C99 compilers
support long long.

Settings
Default: Off
Y On
Enables use of C long long data type on the test hardware.

Off
Disables use of C long long data type on the test hardware.
Tips

* This parameter is enabled only if the selected test hardware supports the C long
long data type.

+ If your compiler does not support C long long, do not select this parameter.
Dependencies
This parameter enables Number of bits: long long.

Command-Line Information
Parameter: TargetLonglLongMode
Type: string

Value: "on” | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency Target specific

Safety precaution No impact for simulation or during development.
Match operation of compiler and hardware for code
generation.

1-483

1 Configuration Parameters Dialog Box

See Also

“Number of bits: long long” on page 1-466

Hardware Implementation Options

Specifying Production Hardware Characteristics

Hardware Implementation Pane

1-484

Hardware Implementation Pane

Build action

Specify whether you want only build or build, load, and run actions during code
generation.

Settings
Default: Build, load and run

Build
Build the code during the build process.
Build, load and run

Build, load, and to run the generated code during the build process.

1-485

1 Configuration Parameters Dialog Box

1-486

Set host COM port

Automatically detect or manually set the COM port your host computer uses to
communicate with the hardware board.

This parameter appears when the Hardware board parameter is set to LEGO
MINDSTORMS NXT, Arduino Mega 2560, or Arduino Uno.

Warning Do not connect Arduino® Uno and Arduino Mega 2560 to a RS-232 serial
interface, commonly found on computers and equipment. RS-232 interfaces can use
voltages greater than 5 Volts, which can damage your Arduino hardware.

Settings
Default: Automatically
Automatically
Let the software determine which COM Port your host computer uses.

Manual ly
Select this option to display the COM port number parameter.

Hardware Implementation Pane

Analog input reference voltage
Set the reference voltage used to measure inputs to the ANALOG IN pins.

This parameter appears when the Target hardware parameter is set to Arduino Mega
2560 or Arduino Uno.

Warning Only connect an external power source to AREF while this parameter is set to
External. Connecting an external power source to AREF while this parameter is set
to any other option exposes the internal voltage references to the external voltage. This
voltage difference can damage your hardware.

Do not connect Arduino Uno and Arduino Mega 2560 to voltages greater than 5 Volts.
Do not connect Arduino Due to voltages greater than 3.3 Volts.

Voltages greater than the specified limits can damage your Arduino hardware.

Settings
Default: Defaul t

Default

Use the default operating voltage of the board. For Arduino Uno and Arduino Mega
2560 the operating voltage is 5 Volts.

Internal (1.1 V)

Valid for Arduino Mega 2560 only: Use the internal 1.1 Volt reference.
Internal (2.56 V)

Valid for Arduino Mega 2560 only: Use the internal 2.56 Volt reference.
External

On the Arduino Uno, Arduino Nano and Arduino Mega 2560, use an external 0-5 volt
power supply connected to the AREF pin. This voltage should match the voltage of
the power supply connected to the Arduino hardware. If your application requires
low-noise measurements, use this option with a filtered power supply.

1-487

1 Configuration Parameters Dialog Box

1-488

Serial 0 baud rate, Serial 1 baud rate, Serial 2 baud rate, Serial 3 baud
rate

Set the baud rate of the serial port on the Arduino hardware.

If you set Set host COM port to Manual ly, then set Serial 0 baud rate as described in
the “Set the COM Port and Baud Rate Manually” topic.

For information on serial ports for different Arduino boards, see “Pin Mapping on
Arduino Blocks”.

Settings
Default: 9600

300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
128000, 500000, 1000000

Hardware Implementation Pane

SPI clock out frequency (in MHz)

Select a value from the list of master clock frequency to obtain an SPI clock frequency.
Settings

Default: 4000

8000, 4000, 2000, 1000, 500, 250, 125

1-489

1 Configuration Parameters Dialog Box

Select an SPI mode for data transmission.
Settings
Default: Mode 0 - Clock Polarity 0, Clock Phase 0O

* Mode 0 - Clock Polarity 0, Clock Phase 0
* Mode 1 - Clock Polarity O, Clock Phase 1
* Mode 2 - Clock Polarity 1, Clock Phase 0O
* Mode 3- Clock Polarity 1, Clock Phase 1

1-490

Hardware Implementation Pane

Bit order

Select the bit order for transmissions.

MSB FTirst to send the most significant bit first for transmission or select LSB First to
send the least significant bit first for transmission.

Settings
Default: MSB first

+ MSB first - Send the most significant bit first for transmission.

+ LSB first - Send the least significant bit first for transmission.

1-491

1 Configuration Parameters Dialog Box

IP address (Ethernet shield)

Enter the IP address of the Arduino Ethernet shield.

1-492

Hardware Implementation Pane

MAC address

Enter the machine address of the Arduino Ethernet shield.

1-493

1 Configuration Parameters Dialog Box

IP address (WiFi shield)

Enter the IP address of the Arduino WiFi shield.

1-494

Hardware Implementation Pane

Service set identifier (SSID)

Enter the SSID of your network. An SSID is a unique ID consisting of 32 characters and
is used for naming wireless networks. An SSID ensures that the data you send over the
network reaches the correct destination.

1-495

1 Configuration Parameters Dialog Box

1-496

WiFi encryption

The WiFi encryption of the network you connect to.
Settings

Default: None

None

Network is not WiFi encrypted.
WPA

Network uses WPA WiFi encryption.
WEP

Network uses WEP WiFi encryption.

Hardware Implementation Pane

WEP key
Enter the WEP key of the network.

This parameter appears only when you select WEP for the WiFi encryption parameter.

1-497

1 Configuration Parameters Dialog Box

WEP key index
Enter the WEP key index of the WEP key.

This parameter appears only when you select WEP for the WiFi encryption parameter.

1-498

Hardware Implementation Pane

WPA password
Enter the WPA password of the network.

This parameter appears only when you select WPA for the WiFi encryption parameter.

1-499

1 Configuration Parameters Dialog Box

Communication interface

Use the ‘serial’ option to run your model in the External mode with serial
communication.

Settings

Default: Serial

+ Serial
- TCP/IP
- WiFi

1-500

Hardware Implementation Pane

Verbose
Select this check box to view the External Mode execution progress and updates in the

Diagnostic Viewer or in the MATLAB Command Window. This parameter appears when
you select TCP/IP or WiFi for Communication interface.

1-501

1 Configuration Parameters Dialog Box

Model Referencing Pane

& Configuration Parameters: vdp/Configuration (Active) = | B | S
Category List e
Select: Options for all referenced models
ggi‘;e{mpum’Expurt Rebuild: []]’any changes detected -
> Optimization Farallel
» Diagnostics
Hardware Implementation [7] Enable parallel model reference builds
Model Referencing - i -
> Simulation Target MATLAB worker initialization for builds: |None
> Code Generation
Enable strict scheduling checks for referenced export-function models
Options for referencing this model L
Total number of instances allowed per top model: lMu\t\pIe ']
Propagate sizes of variable-size signals: [Infer from blocks in model ']
[Z] Minimize algebraic loop occurrences
[7] Propagate all signal labels out of the model
[7] Pass fixed-size scalar root inputs by value for code generation
Model dependencies:
9] 0K I [Cancel I l Help Apply

In this section...

1-502

“Model Referencing Pane Overview” on page 1-504
“Rebuild” on page 1-505

“Never rebuild diagnostic” on page 1-515

“Enable parallel model reference builds” on page 1-517
“MATLAB worker initialization for builds” on page 1-519

“Enable strict scheduling checks for referenced export-function models” on page 1-520

“Minimize algebraic loop occurrences” on page 1-525

“Total number of instances allowed per top model” on page 1-521

“Pass fixed-size scalar root inputs by value for code generation” on page 1-523

Model Referencing Pane

In this section...

“Propagate all signal labels out of the model” on page 1-527
“Propagate sizes of variable-size signals” on page 1-530

“Model dependencies” on page 1-532

1-503

1 Configuration Parameters Dialog Box

Model Referencing Pane Overview

Specify the options for including other models in this model, this model in other models,
and for building simulation and code generation targets.

Configuration
Set the parameters displayed.
Tips

* To open the Model Referencing pane, in the Simulink Editor, select Simulation >
Model Configuration Parameters > Model Referencing.

* The Model Referencing pane allows you to specify options for:

+ Including other models in this model.
* Including the current model in other models.

* The option descriptions use the term this model to refer to the model that you are
configuring and the term referenced model to designate models referenced by this
model.

See Also

* Model Dependencies

* Model Referencing Pane

1-504

Model Referencing Pane

Rebuild

Select the method used to determine when to rebuild simulation and Simulink Coder
targets for referenced models before updating, simulating, or generating code from this
model.

There are four rebuild options. Two options, Always and Never, either always

rebuild the model reference target or never rebuild the target, respectively. The

other two options, 1T any changes detected and IT any changes in known
dependencies detected, cause Simulink to check the model and its dependencies to
determine whether or not to rebuild the model reference target. As part of this checking,
Simulink:

+ Automatically identifies a set of “known” target dependencies that it examines for
changes.

* May compute the model’s structural checksum, which reflects changes to the model
that can affect simulation results.

For additional background information to help you determine which rebuild option
setting to use, see the “Definitions” and “Tips” sections.

Settings
Default: 1¥f any changes detected

Always

Always rebuild targets referenced by this model before simulating, updating, or
generating code from this model.

IT any changes detected

Rebuild a target for a referenced model if Simulink detects a change that could
affect simulation results. To do this, Simulink first looks for changes to the target
dependencies and to the model, and, if none are found, it then computes the
structural checksum of the model to check that the model reference target is up to
date.

IT any changes in known dependencies detected

Rebuild a target if Simulink detects a change in target dependencies or in both the
model and its structural checksum. If Simulink does not detect a change in target
dependencies or the model, it does not compute the structural checksum of the

1-505

1 Configuration Parameters Dialog Box

model and does not rebuild the model reference target. You must list all user-created
dependencies in the Configuration Parameters > Model Referencing > Model
dependencies parameter.

Never

Never rebuild targets referenced by this model before simulating, updating, or
generating code from this model.

Definitions

Known target dependencies

Known target dependencies are files and data outside of model files that Simulink
examines for changes when checking to see if a model reference target is up to date.
Simulink automatically computes a set of known target dependencies. Simulink
examines the known target dependencies to determine whether they have changed,
which it can do quickly. Examples of known target dependencies are:

Changes to the model workspace, if its data source is a MAT-file or MATLAB file
* Enumerated type definitions
* User-written S-functions and their TLC files
+ Files specified in the “Model dependencies” on page 1-532 parameter
+ External files used by Stateflow, a MATLAB Function block, or a MATLAB
System block
Potential target dependencies

Potential dependencies are files and data outside of model files, as well as model
configuration settings, that Simulink examines for changes when checking to see if
a model reference target is up to date. Simulink automatically computes the set of
potential dependencies. Simulink examines the potential dependencies, which it can
do quickly. Examples of potential dependencies are:

* Changes to global variables
+ Changes to targets of models referenced by this model

The Configuration Parameters > Diagnostics > Data Validity > Signal
resolution parameter is set to a value other than Explicit only.

Simulink examines each potential target dependency to determine whether the state
of that dependency is a trigger for causing a structural checksum check.

1-506

Model Referencing Pane

User-created dependencies

Although Simulink automatically examines every known target dependency, you can
have files that can impact the simulation results of your model that Simulink does
not automatically identify. Some examples of user-created dependencies are:

+ MATLAB files that contain code executed by callbacks
+ MAT-files that contain definitions for variables used by the model that are loaded
as part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by
using the Model dependencies parameter.

Structural checksum

As part of determining whether a model reference target is up to date, Simulink may
compute the structural checksum of a model, which reflects changes to the model
that can affect simulation results.

When Simulink computes the structural checksum, it loads and compiles the model.
To compile the model, Simulink must execute callbacks and access all variables that
the model uses. As a result, the structural checksum reflects changes to the model
that can affect simulation results, including changes in user-created dependencies,
regardless of whether you have specified those user-created dependencies in the
Model dependencies parameter.

For more information about the kinds of changes that affect the structural checksum,
see the Simulink.BlockDiagram.getChecksum documentation.

Tips

You do not need to have the same rebuild option setting for every model in a model
reference hierarchy. When you simulate, update, or generate code for a model, the
rebuild option setting for that model applies to all models that it references.

To improve rebuild detection speed and accuracy, use the “Model dependencies” on
page 1-532 parameter to specify user-created dependencies. If you use the I any
changes in known dependencies detected rebuild option, then specify all user-

created dependencies for your model in the “Model dependencies” on page 1-532
parameter.

Each rebuild option setting has benefits and limitations, depending on your rebuild
goal. The following table lists the options in the order of the thoroughness of rebuild
detection. For detailed information about how Simulink determines whether a model

1-507

1 Configuration Parameters Dialog Box

reference target is out of date, see the Change Detection Processing table, which is
part of the next tip.

1-508

Model Referencing Pane

Benefits and Limitations of Each Option

Rebuild Godl

Rebuild Option Setting

Notes

Make all the model
reference targets up to
date.

Always

Requires the most
processing time.

Can trigger unnecessary
builds before simulating,
updating, or generating
code from a referenced
model.

Before you deploy a model,
use the Always setting.

Perform extensive
detection of changes
to dependencies of the
referenced models.

IT any changes
detected

Default.

Reduces the number of
rebuilds, compared to the
Always setting.

Detects changes in the
dependencies of the target,
as well as changes in the
structural checksum of the
referenced model.

The structural checksum
can detect changes that
occur in user-created
dependencies that are not
specified with the “Model
dependencies” on page
1-532 parameter.

Reduce time required for
rebuild detection.

IT any changes in
known dependencies
detected

Reduces the number of
rebuilds, compared to

the I'f any changes
detected option. Ignores
cosmetic changes, such as
annotation changes, in the

1-509

1 Configuration Parameters Dialog Box

1-510

Rebuild Godl

Rebuild Option Setting

Notes

referenced model and its
libraries.

Subset of the checks
performed by the 1T any
changes detected option.

Invalid simulation results
may occur if you do not
specify with the “Model
dependencies” on page
1-532 parameter every
user-created dependency.

Avoid rebuilds during
model development.

Never

Least amount of processing
time, but requires that

you ensure that the model
reference targets are up to
date.

If you are certain that the
model reference targets
are up to date, you can use
this option to avoid target
dependency checking when
simulating, updating, or
generating code from a
model.

May lead to invalid results
if referenced model targets
are not in fact up to date.

To have Simulink check for
changes in known target
dependencies and report if
the model reference targets
may be out of date, use the
“Never rebuild diagnostic”
on page 1-515 parameter.

Model Referencing Pane

Rebuild Godl

Rebuild Option Setting Notes

To manually rebuild model
reference targets, use the
slbui Id function.

To detect whether to perform a rebuild, Simulink uses different processing for each
Rebuild setting. The following table summarizes the main types of change detection
checks that Simulink performs.

Change Detection Processing

Rebuild Option Setting

Simulink Change Detection Processing

Always

Does no change detection processing.

Always rebuilds targets referenced by this model before
simulating, updating, or generating code from this model.

IT any changes
detected

and

IT any changes in
known dependencies
detected

See the flow chart, below.

Never

Change detection processing determined by the “Never
rebuild diagnostic” on page 1-515 parameter.

The following flow chart describes the processing Simulink performs when you set
Rebuild to either I ¥ any changes detected or IT any changes in known
dependencies detected. The “Compare Checksum” boxes indicate that Simulink
detects whether the structural checksum has changed. If the structural checksum has
changed, then Simulink performs a rebuild.

1-511

1 Configuration Parameters Dialog Box

Known Target
Dependancy
Changed?

Model Files or
Libraries Changed?

NO

Potential
Dependencies Trigger

Detected?

\What is the
Rebuild Setting?

If any changes
in known
dependencies
detected

1-512

Do not Rebuild

Rebuild

If any changes
detected

What is the
Rebuild Setting?

Rebuild

If any changes
in known
dependencies
detected

Compare
Checksum

YES Compare

Checksum

If any changes
detected

Compare
Checksum

Model Referencing Pane

* The following examples illustrate differences between the I ¥ any changes
detected and IT any changes in known dependencies detected options.

If you change a MATLAB file that is executed as part of a callback script (or other
user-created dependency) that you have not listed in the Model dependencies
parameter:

+ IT any changes detected — Causes a rebuild, because the change to the file
changes the structural checksum of the model.

IT any changes in known dependencies detected — Does not cause a
rebuild, because no known target dependency has changed.

If you move a block in a model:

+ IF any changes detected — Causes a rebuild, because the model has changed.

+ If any changes in known dependencies detected — Does not cause a
rebuild, because this change does not change the model’s structural checksum.

Dependency
Selecting Never enables the Never rebuild diagnostic parameter.

Command-Line Information

Parameter: UpdateModelReferenceTargets

Type: string

Value: "Force” | "1fOutOfDateOrStructuralChange® | " 1fOutOfDate” |
"AssumeUpToDate*

Default: " 1TOutOfDateOrStructuralChange”

UpdateMode lReferenceTargets Value |Equivalent Rebuild Value

"Force~ Always

" 1 fOutOfDateOrStructuralChange® |If any changes detected

"1 fOutOfDate” IT any changes in known dependencies
detected
"AssumeUpToDate* Never

Recommended Settings

Application Setting

Debugging No impact

1-513

1 Configuration Parameters Dialog Box

1-514

Application Setting
Traceability No impact
Efficiency No impact

Safety precaution

IT any changes detected or Never

If you use the Never setting, then set the Never
rebuild diagnostic parameter to Error if
rebuild required.

See Also

Model Dependencies
Model Referencing Pane

Simulink.BlockDiagram.getChecksum

Model Referencing Pane

Never rebuild diagnostic

Select the diagnostic action that Simulink software should take if it detects a model
reference target that needs to be rebuilt.

Settings
Default: Error if rebuild required

none
Simulink takes no action.

Warn if rebuild required
Simulink displays a warning.

Error if rebuild required

Simulink terminates the simulation and displays an error message.
Tip

If you set the Rebuild parameter to Never and set the Never rebuild diagnostic
parameter to Error if rebuild requiredorWarn if rebuild required, then
Simulink:

* Performs the same change detection processing as for the 1¥ any changes in
known dependencies detected rebuild option setting, except it does not compare
structural checksums

+ Issues an error or warning (depending on the Never rebuild diagnostic setting), if
it detects a change

* Never rebuilds the model reference target

Selecting None bypasses dependency checking, and thus enables faster updating,
simulation, and code generation. However, the None setting can cause models that are
not up to date to malfunction or generate incorrect results. For more information on the
dependency checking, see “Rebuild” on page 1-505.

Dependency
This parameter is enabled only if you select Never in the Rebuild field.

Command-Line Information
Parameter: CheckModelReferenceTargetMessage

1-515

1 Configuration Parameters Dialog Box

Type: string
Value: "none*® | "warning” | "error*
Default: "error*

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Error if rebuild required
See Also

+ Diagnosing Simulation Errors

* Model Referencing Pane

1-516

Model Referencing Pane

Enable parallel model reference builds

Specify whether to use automatic parallel building of the model reference hierarchy
whenever possible.

Settings
Default: Off

|7On

Simulink software builds the model reference hierarchy in parallel whenever possible
(based on computing resources and the structure of the model reference hierarchy).

I off
Simulink never builds the model reference hierarchy in parallel.

Dependency

Selecting this option enables the MATLAB worker initialization for builds
parameter.

Tip
You only need to set Enable parallel model reference builds for the top model of the

model reference hierarchy to which it applies.

Command-Line Information

Parameter: EnableParal lelModelReferenceBuilds
Type: string

Value: "on® | "off"

Default: "off"

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-517

1 Configuration Parameters Dialog Box

See Also

“Reduce Update Time for Referenced Models”

“Reduce Build Time for Referenced Models” in the Simulink Coder documentation
Model Referencing Pane

1-518

Model Referencing Pane

MATLAB worker initialization for builds

Specify how to initialize MATLAB workers for parallel builds.
Settings

Default: None

None

Simulink software takes no action. Specify this value if the child models in the model
reference hierarchy do not rely on anything in the base workspace beyond what they
explicitly set up (for example, with a model load function).

Copy base workspace

Simulink attempts to copy the base workspace to each MATLAB worker. Specify this
value if you use a setup script to prepare the base workspace for all models to use.

Load top model
Simulink loads the top model on each MATLAB worker. Specify this value if the top

model in the model reference hierarchy handles all of the base workspace setup (for
example, with a model load function).

Limitation

For values other than None, limitations apply to global variables in the base workspace.
Global variables are not propagated across parallel workers and do not reflect changes
made by top and child model scripts.

Dependency
Selecting the option Enable parallel model reference builds enables this parameter.

Command-Line Information

Parameter: Paral lelIModelReferenceMATLABWorkerlnit
Type: string
Value: "None
Default: "None*

Copy Base Workspace®™ | "Load Top Model*

Recommended Settings

Application Setting
Debugging No impact

1-519

1 Configuration Parameters Dialog Box

Application Setting
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

+ “Reduce Update Time for Referenced Models”
+ “Reduce Build Time for Referenced Models” in the Simulink Coder documentation

* Model Referencing Pane

Enable strict scheduling checks for referenced export-function models

This parameter enables these checks for referenced export-function models:

* Scheduling order consistency of function-call subsystems in the referenced model
+ Sample time consistency across the referenced model boundary

Settings

Default: On

¥ On
Simulink enforces strict checks on scheduling order and sample time consistency in
referenced export-function models.

I off
Simulink does not enforce strict checks on scheduling order and sample time

consistency in referenced export-function models.

Command-Line Information

Parameter: EnableRefExpFcnMdISchedul ingChecks
Type: string

Value: "on" | "off"

Default: "on*

See Also

+ “Execution Order for Function-Call Root-level Inport Blocks”

1-520

Model Referencing Pane

* “Scheduling Restrictions for Referenced Export-Function Models”

Total number of instances allowed per top model

Specify how many references to this model can occur in another model.
Settings

Default: Multiple

Zero

The model cannot be referenced. An error occurs if a reference to the model occurs in
another model.

One

The model can be referenced at most once in a model reference hierarchy. An error
occurs if more than one reference exists.

Multiple

The model can be referenced more than once in a hierarchy, provided that it contains
no constructs that preclude multiple reference. An error occurs if the model cannot be
multiply referenced, even if only one reference exists.

To use multiple instances of a referenced model in Normal mode, use the Multiple
setting. For details, see “Using Normal Mode for Multiple Instances of Referenced
Models”.

Command-Line Information

Parameter: ModelReferenceNumlnstancesAllowed
Type: string

Value: "Zero® | "Single® | "Multi”

Default: "Multi -

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

1-521

1 Configuration Parameters Dialog Box

See Also

+ Diagnosing Simulation Errors

* Model Referencing Pane

1-522

Model Referencing Pane

Pass fixed-size scalar root inputs by value for code generation

Specify whether a model that calls (references) this model passes its scalar inputs to this
model by value.

Settings
Default: Off (GUI), "on" (command-line)

¥ On
A model that calls (references) this model passes scalar inputs to this model by value.

I off

The calling model passes the inputs by reference (it passes the addresses of the
inputs rather than the input values).

Tips
+ This option is ignored in either of these two cases:

The C function prototype control is not the default.
* The C++ encapsulation interface is not the default.

+ Passing root inputs by value allows this model to read its scalar inputs from register
or local memory, which is faster than reading the inputs from their original locations.

+ Enabling this parameter can result in the simulation behavior differing from
the generated code behavior under certain modeling semantics. If you use the
default setting of Enable all as errors for the Configuration Parameters
> Diagnostics > Connectivity > Context-dependent inputs parameter, then
Simulink reports cases where the modeling semantics may result in inconsistent
behaviors for simulation and for generated code. If the diagnostic identifies an
issue, latch the function-call subsystem inputs. For more information about latching
function-call subsystems, see “Context-dependent inputs” on page 1-340.

+ If the Context-dependent inputs diagnostic reports no issues for a model, consider
enabling the Pass fixed-size scalar root inputs by value for code generation
parameter, which usually generates more efficient code for such a model.

+ If you have a Simulink Coder license, selecting this option can affect reuse of code
generated for subsystems. See Reusable Code and Referenced Models for more
information.

1-523

1 Configuration Parameters Dialog Box

1-524

For SIM targets, a model that references this model passes inputs by reference,
regardless of how you set the Pass fixed-size scalar root inputs by value for
code generation parameter.

Command-Line Information

Parameter:Mode IReferencePassRootInputsByReference
Type: string

Value: "on” | "off"

Default: "on*

Note: The command-line values are reverse of the settings values. Therefore, "on” in the
command line corresponds to the description of “Off” in the settings section, and "off"
in the command line corresponds to the description of “On” in the settings section.

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution Off (GUI), on (command line)
See Also

+ “Create a Function-Call Subsystem”
+ Reusable Code and Referenced Models
* Model Referencing Pane

Model Referencing Pane

Minimize algebraic loop occurrences

Try to eliminate artificial algebraic loops from a model that involve the current
referenced model

Settings
Default: Off

|7On

Simulink software tries to eliminate artificial algebraic loops from a model that
involve the current referenced model.

™ off

Simulink software does not try to eliminate artificial algebraic loops from a model
that involve the current referenced model.

Tips
Enabling this parameter together with the Simulink Coder Single output/update

function parameter results in an error.

Command-Line Information

Parameter: ModelReferenceMinAlglLoopOccurrences
Type: string

Value: "on" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

* Model block

1-525

1 Configuration Parameters Dialog Box

1-526

“Algebraic Loops”
Model Blocks and Direct Feedthrough
Diagnosing Simulation Errors

Model Referencing Pane

Model Referencing Pane

Propagate all signal labels out of the model
Pass propagated signal names to output signals of Model block.
Settings
Default: Off
¥ On
Simulink propagates signal names to output signals of the Model block.

I off
Simulink does not propagate signal names to output signals of the Model block.
Tips
+ Enable this parameter for each instance of a referenced model for which you want to

propagate signal labels.

* The following models illustrate the default behavior, when signal label propagation is
enabled for every eligible signal. Inside the referenced model, signal label propagation
occurs as in any model. However, the output signal from the Model block Out2 port
displays empty brackets for the propagated signal label.

|| ex_sig_label_prop_referenced_model_default

constnt_sig %)

Constant

Chirp Signal Goto

Cut2

From

1-527

1 Configuration Parameters Dialog Box

|E| ex_sig_label_prop_parent_default ¥

ex_sig_label_prop_referenced_maodel_default

oupb— p

< Constant s
) Constant Output
Gain

PTEEEE—
ouaf— [
Chirp_Cutput

Gain1

Model

* The following models illustrate the behavior when you enable the Propagate
all signal labels out of the model parameter for the referenced model. The
output signal from the Model block Out2 port displays the propagated signal name
(Chirp_sig), whose source is inside the referenced model.

|E| ex_sig_label_prop_referenced_model_config_param_on

. constEnt_sig

Constant

Chirp Signal Goto

B
Out2

From

1-528

Model Referencing Pane

|i| ex_sig_label_prop_parent_config_param_on

ex_sig_label_prop_referenced_model_config_param_on

Out! p—————» 1
<fonstant s >
Constant_Output

Gain

Out2p——— 2
—— ()
Chirp_Output

Gain1

Model

Command-Line Information

Parameter: PropagateSignallLabelsOutOfModel
Type: string

Value: "on”" | "off"

Default: "off"

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution Off

See Also

* Model block
+ “Signal Label Propagation”

1-529

1 Configuration Parameters Dialog Box

1-530

Propagate sizes of variable-size signals

Select how variable-size signals propagate through referenced models.

Settings

Default: Infer from blocks in model

Infer from blocks in model

Searches a referenced model and groups blocks into the following categories.

Category |Description Example Blocks in This Category
1 Output signal size depends |Switch or Enable Subsystem block whose
on input signal values. parameter Propagate sizes of variable-
size signals is set to During execution
2 States require resetting Unit Delay block in an Enabled
when the input signal size |Subsystem whose parameter Propagate
changes. sizes of variable-size signals is set to
Only when enabling
3 Output signal size depends |Gain block.
only on the input signal
size.

The search stops at the boundary of Enable, Function-Call, and Action subsystems
because these subsystems can specify when to propagate the size of a variable-size

signal.

Simulink sets the propagation of variable-size signals for a referenced model as

follows:

* One or more blocks in category 1, and all other blocks are in category 3, select
During execution.

* One or more blocks in category 2, and all another blocks are in category 3, select
Only when enabling.

* Blocks in category 1 and 2, report an error.

+ All blocks in category 3 with a conditionally executed subsystem that is not an
Enable, Function-Call, or Action subsystem, report an error. Simulink, in this
case, cannot determine when to propagate sizes of variable-size signals.

Model Referencing Pane

* All blocks in category 3 with only conditionally executed subsystems that are an
Enable, Function-Call, or Action subsystem, support both Only with enabling
and During execution.

Only when enabling

Propagates sizes of variable-size signals for the referenced model only when enabling
(at Enable method).

During execution

Propagates sizes of variable-size signals for the referenced model during execution (at
Outputs method).

Command-Line Information

Parameter: PropagateVarSize

Type: string

Value: "Infer from blocks in model® | "Only when enabling®] "During
execution*®

Default: " Infer from blocks in model*®

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact
See Also

* Model Referencing Pane

1-531

1 Configuration Parameters Dialog Box

Model dependencies

Although Simulink automatically examines every known target dependency, you can
have files that can impact the simulation results of your model that Simulink does not
automatically identify. Some examples of user-created dependencies are:

+ MATLAB files that contain code executed by callbacks

+ MAT-files that contain definitions for variables used by the model that are loaded as
part of a customized initialization script

You can add user-created dependencies to the set of known target dependencies by using
the Model dependencies parameter.

Simulink examines the files specified with the Model dependencies parameter when
determining whether the model reference target is up to date. If the “Rebuild” on page
1-505 parameter is set to:

+ Always, then the listed files are not examined.

+ Either I any changes detectedor If any changes in known
dependencies detected, then changes to listed files cause the model reference
target to rebuild.

* Never, and the “Never rebuild diagnostic” on page 1-515 parameter is set to either
Warn if rebuild requiredor Error if rebuild required, then changes to
listed files cause Simulink to report a warning or error.

Settings
Default: = -

+ Specify the dependencies as a cell array of strings, where each cell array entry is one
of the following:

File name — Simulink looks on the MATLAB path for a file with the given name.
If the file is not on the MATLAB path, then specify the path to the dependent file,
as described below.

Path to the dependent file — The path can be relative or absolute, and must
include the file name.

* Folder — Simulink treats every file in that folder as a dependent file. Simulink
does not include files of subfolders of the folder you specify.

1-532

Model Referencing Pane

* File names must include a file extensions (for example, .m or .mat)
* File names and paths can include spaces.
* You can use the following characters in the strings:
+ The token $MDL, as a prefix to a dependency to indicate that the path to the
dependency is relative to the location of this model file
+ An asterisk (*), as a wild card
+ A percent sign (%), to comment out a line

* An ellipsis (...), to continue a line

For example:

{"D:\Work\parameters.mat®, "$MDL\mdlvars.mat",
"D:\Work\masks*.m"}

Tips

* To improve rebuild detection speed and accuracy, use the Model dependencies
parameter to specify model dependencies other than those that Simulink checks
automatically as part of the its rebuild detection. For details, see the “Rebuild” on
page 1-505 parameter documentation.

+ If the Rebuild setting is I ¥ any changes in known dependencies detected,

to prevent invalid simulation results, add every user-created dependency (for
example, MATLAB code files or MAT-files).

+ Using the Simulink Manifest Tools can help you to identify model dependencies. For
more information, see “Analyze Model Dependencies”.

+ If Simulink cannot find a specified dependent file when you update or simulate a
model that references this model, Simulink displays a warning.

* The dependencies automatically include the model and linked library files, so you do
not need to specify those files with the Model dependencies parameter.

Command-Line Information
Parameter: ModelDependencies
Type: string

Value: any valid value

Default: = -

1-533

1 Configuration Parameters Dialog Box

1-534

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

See Also

* “Rebuild” on page 1-505
+ Model Referencing Pane

Setting

No impact
No impact
No impact

No impact

Simulation Target Pane: General

Simulation Target Pane: General

In this section...

“Simulation Target: General Tab Overview” on page 1-536
“Ensure responsiveness” on page 1-539

“Echo expressions without semicolons” on page 1-541
“Ensure memory integrity” on page 1-543

“Generate typedefs for imported bus and enumeration types” on page 1-545

“Simulation target build mode” on page 1-546

1-535

1 Configuration Parameters Dialog Box

1-536

Simulation Target: General Tab Overview

Configure the simulation target for a model that contains MATLAB Function blocks,

Stateflow charts, or Truth Table blocks.

& Configuration Parameters: sf_car/Configuration (Active)

=NRC X

Category

Select: MATLAB and Stateflow

Solver [7] Echo expressions without semicolons
Data Import/Export
> Optimization Ensure memory integrity

m

Ensure responsiveness

[7] Generate typedefs for imported bus and enumeration types

> Diagnostics
Hardware Implementation

Simulation target build mode: Ilncremental build

'H Execute]

Maodel Referencing

@ Simulation Target
» Code Generation

4 [

2

0K H Cancel H Help Apply

Configuration
Set the parameters that appear.

Tip

To open the Simulation Target pane, in the Simulink Editor, select Simulation > Model

Configuration Parameters > Simulation Target.

See Also

* Speeding Up Simulation
* Simulation Target Pane: General

Simulation Target Pane: General

1-537

1 Configuration Parameters Dialog Box

1-538

Simulation Target Pane: General

Ensure responsiveness

Enables responsiveness checks in code generated for MATLAB Function blocks.
Settings

Default: On

41 On

Enables periodic checks for Ctrl+C breaks in code generated for MATLAB Function
blocks. Also allows graphics refreshing.

Off

Disables periodic checks for Ctrl+C breaks in code generated for MATLAB Function
blocks. Also disables graphics refreshing.

Caution Without these checks, the only way to end a long-running execution might be
to terminate the MATLAB session.

Command-Line Information
Parameter: SimCtrliC
Type: string

Value: "on”" | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Off
Safety precaution On
See Also

+ “Control Run-Time Checks” in the Simulink User's Guide

* Simulation Target Pane: General

1-539

1 Configuration Parameters Dialog Box

1-540

Simulation Target Pane: General

Echo expressions without semicolons

Enable run-time output in the MATLAB Command Window, such as actions that do not
terminate with a semicolon. This behavior applies to a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Settings

Default: On

Y1 On

Enables run-time output to appear in the MATLAB Command Window during
simulation.

off
Disables run-time output from appearing in the MATLAB Command Window during

simulation.
Tip
+ If you disable run-time output, faster model simulation occurs.
Command-Line Information
Parameter: SFSimEcho
Type: string

Value: "on® | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging On
Traceability No impact
Efficiency Off

Safety precaution No impact
See Also

* Speeding Up Simulation

1-541

1 Configuration Parameters Dialog Box

* Simulation Target Pane: General

1-542

Simulation Target Pane: General

Ensure memory integrity

Detects violations of memory integrity in code generated for MATLAB Function blocks
and stops execution with a diagnostic.

Settings

Default: On

41 On

Detect violations of memory integrity in code generated for MATLAB Function blocks
and stops execution with a diagnostic message.

Off

Does not detect violations of memory integrity in code generated for MATLAB
Function blocks.

Caution Without these checks, violations result in unpredictable behavior.

Tips

The most likely cause of memory integrity issues is accessing an array out of bounds.

Only disable these checks if you are sure that your code is safe and that all array
bounds and dimension checking is unnecessary.

Command-Line Information
Parameter: Simlntegrity
Type: string

Value: "on” | "off"
Default: "on*

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency Off

1-543

1 Configuration Parameters Dialog Box

Safety precaution On

See Also

“Control Run-Time Checks” in the Simulink User's Guide
Simulation Target Pane: General

1-544

Simulation Target Pane: General

Generate typedefs for imported bus and enumeration types

Determines typedef handling and generation for imported bus and enumeration data
types in Stateflow and MATLAB Function blocks.

Settings

Default: Off

Y On
The software will generate its own typedefs for imported bus and enumeration types.
Off

The software will not generate its own typedefs for imported bus and enumeration
types, and will use definitions in the included header file. This setting requires you

to include header files in Configuration Parameters, under Simulation Target >
Custom Code > Header file.

Tips

This selection applies if you are using imported bus or enumeration data types in
Stateflow and MATLAB Function blocks.

Command-Line Information

Parameter: SimGenlImportedTypeDefs
Type: string

Value: "on" | "off"

Default: "off"

1-545

1 Configuration Parameters Dialog Box

1-546

Simulation target build mode

Specifies how you build the simulation target for a model that contains MATLAB
Function blocks, Stateflow charts, or Truth Table blocks.

Settings
Default: Incremental build

Incremental build

This option rebuilds only those portions of the target that you changed since the last
build.

Rebuild all (including libraries)

This option rebuilds the target, including libraries, from scratch.
Make without generating code

This option invokes the make process without generating code.
Clean all (delete generated code/executables)

This option deletes both generated source code and executable files.
Clean objects (delete executables only)

This option deletes only executable files.
Tips

* The default Incremental build is a good choice for most models. This action takes
place whenever you simulate your model.

+ Set Rebuild all (including libraries) if you have changed your compiler or
updated your object files since the last simulation. For example, use this option to
rebuild the simulation target to include custom code changes.

+ Set Make without generating code when you have custom source files that you
must recompile in an incremental build mechanism that does not detect changes in
custom code files.

Command-Line Information

Parameter: SimBui ldMode

Type: string

Value: "sf_incremental_build® | "sf_nonincremental _build® | "sf_make
st _make clean”™ | "sf _make clean_objects”

Simul